Bubble plume dynamics in a stratified medium and the implications for water quality amelioration in lakes

1992 ◽  
Vol 28 (2) ◽  
pp. 313-321 ◽  
Author(s):  
S. G. Schladow
Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 88
Author(s):  
Xiamei Man ◽  
Chengwang Lei ◽  
Cayelan C. Carey ◽  
John C. Little

Many researchers use one-dimensional (1-D) and three-dimensional (3-D) coupled hydrodynamic and water-quality models to simulate water quality dynamics, but direct comparison of their relative performance is rare. Such comparisons may quantify their relative advantages, which can inform best practices. In this study, we compare two 1-year simulations in a shallow, eutrophic, managed reservoir using a community-developed 1-D model and a 3-D model coupled with the same water-quality model library based on multiple evaluation criteria. In addition, a verified bubble plume model is coupled with the 1-D and 3-D models to simulate the water temperature in four epilimnion mixing periods to further quantify the relative performance of the 1-D and 3-D models. Based on the present investigation, adopting a 1-D water-quality model to calibrate a 3-D model is time-efficient and can produce reasonable results; 3-D models are recommended for simulating thermal stratification and management interventions, whereas 1-D models may be more appropriate for simpler model setups, especially if field data needed for 3-D modeling are lacking.


2009 ◽  
Vol 60 (10) ◽  
pp. 2599-2611 ◽  
Author(s):  
Monzur Alam Imteaz ◽  
Abdallah Shanableh ◽  
Takashi Asaeda

A numerical model was developed to simulate water quality and algal species composition in a deep lake. As artificial destratification is widely used in the lakes, a destratification (bubble plume) model was incorporated with the ecological model to simulate the dynamic responses of different species under artificial mixing. The ecological model predicts concentrations of PO4-P, NH4-N, NO3-N, DO and pH throughout the water column, all of which have a significant influence on the growth of different algal species. The model has been calibrated using data from Uokiri Lake (Japan) for two different species (Diatom and Cyanobacteria) with and without artificial mixing. The calibrated model was used to simulate different conditions of artificial mixing within the lake over a period of five months. The simulation results show that artificial mixing favors non-motile heavier species, such as Diatom, while preventing the growth of Blue-green algae. It is also demonstrated that intermittent operation of the artificial mixing is better for water quality amelioration than continuous operation.


Author(s):  
Chen Lan ◽  
Jingan Chen ◽  
Jingfu Wang ◽  
Jianyang Guo ◽  
Jia Yu ◽  
...  

2012 ◽  
Vol 66 (12) ◽  
pp. 2722-2730 ◽  
Author(s):  
R. L. Fernandez ◽  
M. Bonansea ◽  
A. Cosavella ◽  
F. Monarde ◽  
M. Ferreyra ◽  
...  

Artificial thermal mixing of the water column is a common method of addressing water quality problems with the most popular method of destratification being the bubble curtain. The air or oxygen distribution along submerged multiport diffusers is based on similar basic principles as those of outfall disposal systems. Moreover, the disposal of sequestered greenhouse gases into the ocean, as recently proposed by several researchers to mitigate the global warming problem, requires analogous design criteria. In this paper, the influence of a bubble-plume is evaluated using full-scale temperature and water quality data collected in San Roque Reservoir, Argentina. A composite system consisting of seven separated diffusers connected to four 500 kPa compressors was installed at this reservoir by the end of 2008. The original purpose of this air bubble system was to reduce the stratification, so that the water body may completely mix under natural phenomena and remain well oxygenated throughout the year. By using a combination of the field measurements and modelling, this work demonstrates that thermal mixing by means of compressed air may improve water quality; however, if improperly sized or operated, such mixing can also cause deterioration. Any disruption in aeration during the destratification process, for example, may result in a reduction of oxygen levels due to the higher hypolimnetic temperatures. Further, the use of artificial destratification appears to have insignificant influence on reducing evaporation rates in relatively shallow impoundments such as San Roque reservoir.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2467
Author(s):  
David Birt ◽  
Danielle Wain ◽  
Emily Slavin ◽  
Jun Zang ◽  
Robert Luckwell ◽  
...  

During summer, reservoir stratification can negatively impact source water quality. Mixing via bubble plumes (i.e., destratification) aims to minimise this. Within Blagdon Lake, a UK drinking water reservoir, a bubble plume system was found to be insufficient for maintaining homogeneity during a 2017 heatwave based on two in situ temperature chains. Air temperature will increase under future climate change which will affect stratification; this raises questions over the future applicability of these plumes. To evaluate bubble-plume performance now and in the future, AEM3D was used to simulate reservoir mixing. Calibration and validation were done on in situ measurements. The model performed well with a root mean squared error of 0.53 °C. Twelve future meteorological scenarios from the UK Climate Projection 2018 were taken and down-scaled to sub-daily values to simulate lake response to future summer periods. The down-scaling methods, based on diurnal patterns, showed mixed results. Future model runs covered five-year intervals from 2030 to 2080. Mixing events, mean water temperatures, and Schmidt stability were evaluated. Eight scenarios showed a significant increase in water temperature, with two of these scenarios showing significant decrease in mixing events. None showed a significant increase in energy requirements. Results suggest that future climate scenarios may not alter the stratification regime; however, the warmer water may favour growth conditions for certain species of cyanobacteria and accelerate sedimentary oxygen consumption. There is some evidence of the lake changing from polymictic to a more monomictic nature. The results demonstrate bubble plumes are unlikely to maintain water column homogeneity under future climates. Modelling artificial mixing systems under future climates is a powerful tool to inform system design and reservoir management including requirements to prevent future source water quality degradation.


2003 ◽  
Vol 47 (7-8) ◽  
pp. 149-155 ◽  
Author(s):  
J.P. Antenucci ◽  
R. Alexander ◽  
J.R. Romero ◽  
J. Imberger

Possible management strategies to improve water quality in a eutrophic water supply reservoir in Argentina were evaluated using the one-dimensional coupled hydrodynamics and water quality model DYRESM-CAEDYM. The model was used to determine the effects of several different artificial destratification system designs (including both bubble plume diffusers and surface impellers with draft tubes, both separately and in combination), on the biomass of the potentially toxic cyanobacteria Microcystis aeruginosa. The best results were found by using a combination of a deep and shallow diffuser, to break down the seasonal thermocline and therefore limit sediment nutrient release and anoxia, and to enhance vertical mixing in the surface mixed layer, respectively.


2021 ◽  
Author(s):  
Jack Waterhouse ◽  
Thomas Kjeldsen ◽  
Lee Bryant

<p>Thermal destratification of lakes and reservoirs is a primary control on dissolved-oxygen levels below the thermocline. In such waterbodies, internal biogeochemical processes are often controlled by a complex set of oxygen-controlled forcing mechanisms. Therefore, preventing stratification by artificial processes has long been an important tool in maintaining dissolved oxygen concentrations and corresponding water quality and ecosystem health in drinking water reservoirs. Blagdon Lake in Somerset, SW England is a medium-size (1.8km<sup>2</sup>), shallow depth (max: 13.1m) drinking water reservoir. An extensive 6-month field campaign was undertaken in the summer of 2019 at the reservoir, measuring depth profiles of dissolved oxygen, turbidity, conductivity, temperature and pH using an EXO3 multiparameter sonde and a CastAway® CTD. In addition, two thermistor chains were permanently installed measuring temperature and dissolved oxygen concentrations using Onset TidbiT v2 loggers (1m depth intervals) through the water column at 30-minute temporal resolution and a miniDOT oxygen logger at the sediment-water interface respectively. These thermistor chains collected data from summer 2019 – autumn 2020. The data from this field campaign were analysed to investigate the effectiveness of the installed bubble-plume destratification system present at Blagdon Lake, SW England. Similar systems are used in 66% of UK reservoirs employing artificial mixing infrastructure, though very little has been published evaluating their effectiveness in such temperate, shallow, drinking water reservoirs. Initial analysis of the results indicates that the bubble-plume system, nor wind shear is effectively preventing spring/summer destratification for long periods, and that neither are the main factor controlling thermal stratification in Blagdon Lake. The data provides a unique opportunity to directly assess the impact of bubble-plume aerators and their effectiveness at thermal destratification to control dissolved oxygen and water quality in temperate, shallow water bodies.</p>


Sign in / Sign up

Export Citation Format

Share Document