Estimating Bubble Plume Dynamics in Breaking Waves using the Thermal Signature of the Residual Foam

2020 ◽  
Author(s):  
Naeem Masnadi ◽  
C. Chris Chickadel ◽  
Andrew Jessup
Author(s):  
C.E Blenkinsopp ◽  
J.R Chaplin

This paper describes detailed measurements and analysis of the time-varying distribution of void fractions in three different breaking waves under laboratory conditions. The measurements were made with highly sensitive optical fibre phase detection probes and document the rapid spatial and temporal evolutions of both the bubble plume generated beneath the free surface and the splashes above. Integral properties of the measured void fraction fields reveal a remarkable degree of similarity between characteristics of the two-phase flow in different breaker types as they evolve with time. Depending on the breaker type, the energy expended in entraining air and generating splash accounts for a minimum of between 6.5 and 14% of the total energy dissipated during wave breaking.


2021 ◽  
Author(s):  
Roy A. Pillers ◽  
Theodore J. Heindel

Abstract Plunging jets have been extensively studied for their relatively simple set-up but complex multiphase interactions. This phenomenon includes gas carry-under and mixing, which occurs when shear effects between the plunging liquid jet and surrounding gas are sufficient to entrain gas at the impact site. Previous investigations typically assume the floor has an infinite depth and neglect compressive effects caused by the jet interacting with the catch tank floor. While this assumption is ideal for breaking waves in the middle of the ocean, many other applications have to contend with floor effects. These include waterfalls, wastewater treatment, dams, fish farms, mineral separation, and molten metal pouring. It is hypothesized that floor interactions will significantly affect the multiphase flow hydrodynamics, especially in places where the uninhibited jet would approach or pass the floor region. Using a large catch tank with an adjustable floor region designed to hold a constant water level, data were collected using high-speed backlit stereographic imaging to capture and compare the effects of three separate tank depths with those found using an infinite pool assumption. To identify bubbles in each stereographic projection, a uniform bubble recognition procedure was developed that was used across all data sets. This allowed for the automated identification of bubble entrainment regions, which could be compared with different flow conditions. Preliminary results are inconclusive as to the effects of the floor region on the bubble plume dynamics; however, the results showed consistent measurements between trials and the two stereographic cameras, implying the time variation of the jet dynamics was the primary source of uncertainty in the results and not the identification procedure. Therefore, the identification methods have provided a method for plume volume and shape estimation, which will be used in future studies using 3D imaging techniques.


2020 ◽  
Author(s):  
Naeem Masnadi ◽  
C Christopher Chickadel ◽  
Andrew Jessup

2016 ◽  
Vol 801 ◽  
pp. 91-129 ◽  
Author(s):  
Luc Deike ◽  
W. Kendall Melville ◽  
Stéphane Popinet

We investigate air entrainment and bubble statistics in three-dimensional breaking waves through novel direct numerical simulations of the two-phase air–water flow, resolving the length scales relevant for the bubble formation problem, the capillary length and the Hinze scale. The dissipation due to breaking is found to be in good agreement with previous experimental observations and inertial scaling arguments. The air entrainment properties and bubble size statistics are investigated for various initial characteristic wave slopes. For radii larger than the Hinze scale, the bubble size distribution, can be described by $N(r,t)=B(V_{0}/2{\rm\pi})({\it\varepsilon}(t-{\rm\Delta}{\it\tau})/Wg)r^{-10/3}r_{m}^{-2/3}$ during the active breaking stages, where ${\it\varepsilon}(t-{\rm\Delta}{\it\tau})$ is the time-dependent turbulent dissipation rate, with ${\rm\Delta}{\it\tau}$ the collapse time of the initial air pocket entrained by the breaking wave, $W$ a weighted vertical velocity of the bubble plume, $r_{m}$ the maximum bubble radius, $g$ gravity, $V_{0}$ the initial volume of air entrained, $r$ the bubble radius and $B$ a dimensionless constant. The active breaking time-averaged bubble size distribution is described by $\bar{N}(r)=B(1/2{\rm\pi})({\it\epsilon}_{l}L_{c}/Wg{\it\rho})r^{-10/3}r_{m}^{-2/3}$, where ${\it\epsilon}_{l}$ is the wave dissipation rate per unit length of breaking crest, ${\it\rho}$ the water density and $L_{c}$ the length of breaking crest. Finally, the averaged total volume of entrained air, $\bar{V}$, per breaking event can be simply related to ${\it\epsilon}_{l}$ by $\bar{V}=B({\it\epsilon}_{l}L_{c}/Wg{\it\rho})$, which leads to a relationship for a characteristic slope, $S$, of $\bar{V}\propto S^{5/2}$. We propose a phenomenological turbulent bubble break-up model based on earlier models and the balance between mechanical dissipation and work done against buoyancy forces. The model is consistent with the numerical results and existing experimental results.


Author(s):  
Naeem Masnadi ◽  
C. Chris Chickadel ◽  
Andrew T. Jessup

2018 ◽  
Vol 48 (11) ◽  
pp. 2609-2626 ◽  
Author(s):  
Adrian H. Callaghan

AbstractWave breaking is the most important mechanism that leads to the dissipation of oceanic surface wave energy. A relationship between the energy dissipation rate associated with breaking wave whitecaps and the area of whitecap foam per unit area ocean surface is expected, but there is a lack of consensus on what form this relationship should take. Here, mathematical representations of whitecap coverage and growth-phase whitecap coverage are derived, and an energy-balance approach is used to formulate and in terms of . Both and are found to be linearly proportional to but also inversely proportional to the bubble plume penetration depth during active breaking. Since this depth can vary for breaking waves of different scales and slopes, there is likely no unique relationship between and either or as bubble plume penetration depth must also be specified. Whitecap observations from the North Atlantic are used to estimate bubble plume penetration depth as a function of wind speed and then used with measurements to compute . An estimate of the relative magnitude of to the rate of energy input from the wind to the waves is made. Above wind speeds of about 12 m s−1, is largely balanced by . At lower wind speeds the ratio quickly drops below unity with decreasing wind speed. It is proposed that sea-state-driven variability in both and bubble plume penetration depth are significant causes of variation in whitecap coverage datasets and parameterizations.


2020 ◽  
Author(s):  
Naeem Masnadi ◽  
C Christopher Chickadel ◽  
Andrew Jessup

2020 ◽  
pp. 34-42
Author(s):  
Thibault Chastel ◽  
Kevin Botten ◽  
Nathalie Durand ◽  
Nicole Goutal

Seagrass meadows are essential for protection of coastal erosion by damping wave and stabilizing the seabed. Seagrass are considered as a source of water resistance which modifies strongly the wave dynamics. As a part of EDF R & D seagrass restoration project in the Berre lagoon, we quantify the wave attenuation due to artificial vegetation distributed in a flume. Experiments have been conducted at Saint-Venant Hydraulics Laboratory wave flume (Chatou, France). We measure the wave damping with 13 resistive waves gauges along a distance L = 22.5 m for the “low” density and L = 12.15 m for the “high” density of vegetation mimics. A JONSWAP spectrum is used for the generation of irregular waves with significant wave height Hs ranging from 0.10 to 0.23 m and peak period Tp ranging from 1 to 3 s. Artificial vegetation is a model of Posidonia oceanica seagrass species represented by slightly flexible polypropylene shoots with 8 artificial leaves of 0.28 and 0.16 m height. Different hydrodynamics conditions (Hs, Tp, water depth hw) and geometrical parameters (submergence ratio α, shoot density N) have been tested to see their influence on wave attenuation. For a high submergence ratio (typically 0.7), the wave attenuation can reach 67% of the incident wave height whereas for a low submergence ratio (< 0.2) the wave attenuation is negligible. From each experiment, a bulk drag coefficient has been extracted following the energy dissipation model for irregular non-breaking waves developed by Mendez and Losada (2004). This model, based on the assumption that the energy loss over the species meadow is essentially due to the drag force, takes into account both wave and vegetation parameter. Finally, we found an empirical relationship for Cd depending on 2 dimensionless parameters: the Reynolds and Keulegan-Carpenter numbers. These relationships are compared with other similar studies.


Sign in / Sign up

Export Citation Format

Share Document