Eddy kinetic energy and momentum flux in the Southern Ocean: Comparison of a global eddy-resolving model with altimeter, drifter, and current-meter data

1994 ◽  
Vol 99 (C4) ◽  
pp. 7903 ◽  
Author(s):  
John L. Wilkin ◽  
Rosemary A. Morrow
2012 ◽  
Vol 69 (10) ◽  
pp. 3028-3039 ◽  
Author(s):  
Elizabeth A. Barnes ◽  
Chaim I. Garfinkel

Abstract As the surface drag is increased in a comprehensive general circulation model (GCM), the upper-level zonal winds decrease and eddy momentum flux convergence into the jet core increases. Globally averaged eddy kinetic energy decreases, a response that is inconsistent with the conventional barotropic governor mechanism whereby decreased barotropic shears encourage baroclinic wave growth. As the conventional barotropic governor appears insufficient to explain the entire response in the comprehensive GCM, the nondivergent barotropic model on the sphere is used to demonstrate an additional mechanism for the effect of surface drag on eddy momentum fluxes and eddy kinetic energy. Analysis of the pseudomomentum budget shows that increased drag modifies the background meridional vorticity gradient, which allows for enhanced eddy momentum flux convergence and decreased eddy kinetic energy in the presence of a constant eddy source. This additional feedback may explain the changes in eddy momentum fluxes observed in the comprehensive GCM and was likely present in previous work on the barotropic governor.


2010 ◽  
Vol 40 (7) ◽  
pp. 1659-1668 ◽  
Author(s):  
A. M. Treguier ◽  
J. Le Sommer ◽  
J. M. Molines ◽  
B. de Cuevas

Abstract The authors evaluate the response of the Southern Ocean to the variability and multidecadal trend of the southern annular mode (SAM) from 1972 to 2001 in a global eddy-permitting model of the DRAKKAR project. The transport of the Antarctic Circumpolar Current (ACC) is correlated with the SAM at interannual time scales but exhibits a drift because of the thermodynamic adjustment of the model (the ACC transport decreases because of a low renewal rate of dense waters around Antarctica). The interannual variability of the eddy kinetic energy (EKE) and the ACC transport are uncorrelated, but the EKE decreases like the ACC transport over the three decades, even though meridional eddy fluxes of heat and buoyancy remain stable. The contribution of oceanic eddies to meridional transports is an important issue because a growth of the poleward eddy transport could, in theory, oppose the increase of the mean overturning circulation forced by the SAM. In the authors’ model, the total meridional circulation at 50°S is well correlated with the SAM index (and the Ekman transport) at interannual time scales, and both increase over three decades between 1972 and 2001. However, given the long-term drift, no SAM-linked trend in the eddy contribution to the meridional overturning circulation is detectable. The increase of the meridional overturning is due to the time-mean component and is compensated by an increased buoyancy gain at the surface. The authors emphasize that the meridional circulation does not vary in a simple relationship with the zonal circulation. The model solution points out that the zonal circulation and the eddy kinetic energy are governed by different mechanisms according to the time scale considered (interannual or decadal).


2009 ◽  
Vol 39 (9) ◽  
pp. 2011-2023 ◽  
Author(s):  
Emily Shuckburgh ◽  
Helen Jones ◽  
John Marshall ◽  
Chris Hill

Abstract A diagnostic framework is presented, based on the Nakamura effective diffusivity, to investigate the regional variation in eddy diffusivity. Comparison of three different diffusivity calculations enables the effects of locally enhanced tracer diffusion to be distinguished from the streamwise average. It also enables the distinction to be made between locally generated complexity in the tracer structure and that advected into a particular domain. The technique is applied to the Pacific sector of the Southern Ocean. The results highlight the important role that the mean flow plays in determining eddy diffusivity. The effective diffusivity is not simply related to the eddy kinetic energy: in regions of a strong mean flow the eddy diffusivity can be suppressed even in the presence of moderately strong eddy activity; conversely, in a region of weak mean flow the eddy diffusivity can be enhanced even in the presence of only weak eddy activity. This casts doubt on the ability of parameterizations based solely on the eddy kinetic energy to adequately characterize the eddy diffusivity in regions of strongly varying mean flow such as the Southern Ocean. The results are, however, consistent with the eddy transport and mixing variability predicted by potential-vorticity-based arguments.


2016 ◽  
Vol 46 (12) ◽  
pp. 3729-3750 ◽  
Author(s):  
Andrew L. Stewart ◽  
Andrew F. Thompson

AbstractAlong various stretches of the Antarctic margins, dense Antarctic Bottom Water (AABW) escapes its formation sites and descends the continental slope. This export necessarily raises the isopycnals associated with lighter density classes over the continental slope, resulting in density surfaces that connect the near-freezing waters of the continental shelf to the much warmer circumpolar deep water (CDW) at middepth offshore. In this article, an eddy-resolving process model is used to explore the possibility that AABW export enhances shoreward heat transport by creating a pathway for CDW to access the continental shelf without doing any work against buoyancy forces. In the absence of a net alongshore pressure gradient, the shoreward CDW transport is effected entirely by mesoscale and submesoscale eddy transfer. Eddies are generated partly by instabilities at the pycnocline, sourcing their energy from the alongshore wind stress, but primarily by instabilities at the CDW–AABW interface, sourcing their energy from buoyancy loss on the continental shelf. This combination of processes induces a vertical convergence of eddy kinetic energy and alongshore momentum into the middepth CDW layer, sustaining a local maximum in the eddy kinetic energy over the slope and balancing the Coriolis force associated with the shoreward CDW transport. The resulting slope turbulence self-organizes into a series of alternating along-slope jets with strongly asymmetrical contributions to the slope energy and momentum budgets. Cross-shore variations in the potential vorticity gradient cause the jets to drift continuously offshore, suggesting that fronts observed in regions of AABW down-slope flow may in fact be transient features.


2019 ◽  
Author(s):  
Heiner Dietze ◽  
Ulrike Löptien ◽  
Julia Getzlaff

Abstract. We present a new near-global coupled biogeochemical ocean-circulation model configuration. The configuration features a horizontal discretization with a grid spacing of less than 11 km in the Southern Ocean and gradually coarsens in meridional direction to more than 200 km at 64° N where the model is bounded by a solid wall. The underlying code framework is GFDL's Modular Ocean Model coupled to the Biology Light Iron Nutrients and Gasses (BLING) ecosystem model of Galbraith et al. (2010). The configuration is cutting-edge in that it features both a relatively equilibrated oceanic carbon inventory and a realistic representation of eddy kinetic energy – a combination that has, to-date, been precluded by prohibitive computational cost. Results from a simulation with climatological forcing and a sensitivity experiment with increasing winds suggest that the configuration is suited to explore Southern Ocean Carbon uptake dynamics on decadal timescales. Further, the fidelity of simulated bottom water temperatures off and on the Antarctic Shelf suggest that the configuration may be used to provide boundary conditions to ice-sheet models. The configuration is dubbed MOMSO a Modular Ocean Model Southern Ocean configuration.


Sign in / Sign up

Export Citation Format

Share Document