scholarly journals Eddy Generation and Jet Formation via Dense Water Outflows across the Antarctic Continental Slope

2016 ◽  
Vol 46 (12) ◽  
pp. 3729-3750 ◽  
Author(s):  
Andrew L. Stewart ◽  
Andrew F. Thompson

AbstractAlong various stretches of the Antarctic margins, dense Antarctic Bottom Water (AABW) escapes its formation sites and descends the continental slope. This export necessarily raises the isopycnals associated with lighter density classes over the continental slope, resulting in density surfaces that connect the near-freezing waters of the continental shelf to the much warmer circumpolar deep water (CDW) at middepth offshore. In this article, an eddy-resolving process model is used to explore the possibility that AABW export enhances shoreward heat transport by creating a pathway for CDW to access the continental shelf without doing any work against buoyancy forces. In the absence of a net alongshore pressure gradient, the shoreward CDW transport is effected entirely by mesoscale and submesoscale eddy transfer. Eddies are generated partly by instabilities at the pycnocline, sourcing their energy from the alongshore wind stress, but primarily by instabilities at the CDW–AABW interface, sourcing their energy from buoyancy loss on the continental shelf. This combination of processes induces a vertical convergence of eddy kinetic energy and alongshore momentum into the middepth CDW layer, sustaining a local maximum in the eddy kinetic energy over the slope and balancing the Coriolis force associated with the shoreward CDW transport. The resulting slope turbulence self-organizes into a series of alternating along-slope jets with strongly asymmetrical contributions to the slope energy and momentum budgets. Cross-shore variations in the potential vorticity gradient cause the jets to drift continuously offshore, suggesting that fronts observed in regions of AABW down-slope flow may in fact be transient features.

2013 ◽  
Vol 43 (7) ◽  
pp. 1453-1471 ◽  
Author(s):  
Andrew L. Stewart ◽  
Andrew F. Thompson

Abstract Previous idealized investigations of Southern Ocean overturning have omitted its connection with the Antarctic continental shelves, leaving the influence of shelf processes on Antarctic Bottom Water (AABW) export unconsidered. In particular, the contribution of mesoscale eddies to setting the stratification and overturning circulation in the Antarctic Circumpolar Current (ACC) is well established, yet their role in cross-shelf exchange of water masses remains unclear. This study proposes a residual-mean theory that elucidates the connection between Antarctic cross-shelf exchange and overturning in the ACC, and the contribution of mesoscale eddies to the export of AABW. The authors motivate and verify this theory using an eddy-resolving process model of a sector of the Southern Ocean. The strength and pattern of the simulated overturning circulation strongly resemble those of the real ocean and are closely captured by the residual-mean theory. Over the continental slope baroclinic instability is suppressed, and so transport by mesoscale eddies is reduced. This suppression of the eddy fluxes also gives rise to the steep “V”-shaped isopycnals that characterize the Antarctic Slope Front in AABW-forming regions of the continental shelf. Furthermore, to produce water on the continental shelf that is dense enough to sink to the deep ocean, the deep overturning cell must be at least comparable in strength to wind-driven mean overturning on the continental slope. This results in a strong sensitivity of the deep overturning strength to changes in the polar easterly winds.


2019 ◽  
Vol 49 (12) ◽  
pp. 3163-3177 ◽  
Author(s):  
Wilma Gertrud Charlotte Huneke ◽  
Andreas Klocker ◽  
Benjamin Keith Galton-Fenzi

AbstractThe Antarctic Slope Front (ASF) is located along much of the Antarctic continental shelf break and helps to maintain a barrier to the movement of Circumpolar Deep Water (CDW) onto the continental shelf. The stability of the ASF has a major control on cross-shelf heat transport and ocean-driven basal melting of Antarctic ice shelves. Here, the ASF dynamics are investigated for continental shelves with weak dense shelf water (DSW) formation, which are thought to have a stable ASF, common for regions in East Antarctica. Using an ocean process model, this study demonstrates how offshore bottom Ekman transport of shelf waters leads to the development of a deep bottom mixed layer at the lower continental slope, and subsequently determines an intrinsic variability of the ASF. The ASF variability is characterized by instability events that affect the entire water column and occur every 5–10 years and last for approximately half a year. During these instability events, the cross-shelf density gradient weakens and CDW moves closer to the continent. Stronger winds increase the formation rate of the bottom mixed layer, which causes a subsequent increase of instability events. If the observed freshening trend of continental shelf waters leads to weaker DSW formation, more regions might be vulnerable for the ASF variability to develop in the future.


Author(s):  
Karen J. Heywood ◽  
Sunke Schmidtko ◽  
Céline Heuzé ◽  
Jan Kaiser ◽  
Timothy D. Jickells ◽  
...  

The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean–atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.


2019 ◽  
Vol 49 (8) ◽  
pp. 2043-2074 ◽  
Author(s):  
Andrew L. Stewart ◽  
Andreas Klocker ◽  
Dimitris Menemenlis

AbstractAll exchanges between the open ocean and the Antarctic continental shelf must cross the Antarctic Slope Current (ASC). Previous studies indicate that these exchanges are strongly influenced by mesoscale and tidal variability, yet the mechanisms responsible for setting the ASC’s transport and structure have received relatively little attention. In this study the roles of winds, eddies, and tides in accelerating the ASC are investigated using a global ocean–sea ice simulation with very high resolution (1/48° grid spacing). It is found that the circulation along the continental slope is accelerated both by surface stresses, ultimately sourced from the easterly winds, and by mesoscale eddy vorticity fluxes. At the continental shelf break, the ASC exhibits a narrow (~30–50 km), swift (>0.2 m s−1) jet, consistent with in situ observations. In this jet the surface stress is substantially reduced, and may even vanish or be directed eastward, because the ocean surface speed matches or exceeds that of the sea ice. The shelfbreak jet is shown to be accelerated by tidal momentum advection, consistent with the phenomenon of tidal rectification. Consequently, the shoreward Ekman transport vanishes and thus the mean overturning circulation that steepens the Antarctic Slope Front (ASF) is primarily due to tidal acceleration. These findings imply that the circulation and mean overturning of the ASC are not only determined by near-Antarctic winds, but also depend crucially on sea ice cover, regionally-dependent mesoscale eddy activity over the continental slope, and the amplitude of tidal flows across the continental shelf break.


2017 ◽  
Vol 47 (4) ◽  
pp. 879-894 ◽  
Author(s):  
K. H. Brink

AbstractModels show that surface cooling over a sloping continental shelf should give rise to baroclinic instability and thus tend toward gravitationally stable density stratification. Less is known about how alongshore winds affect this process, so the role of surface momentum input is treated here by means of a sequence of idealized, primitive equation numerical model calculations. The effects of cooling rate, wind amplitude and direction, bottom slope, bottom friction, and rotation rate are all considered. All model runs lead to instability and an eddy field. While instability is not strongly affected by upwelling-favorable alongshore winds, wind-driven downwelling substantially reduces eddy kinetic energy, largely because the downwelling circulation plays a similar role to baroclinic instability by flattening isotherms and so reducing available potential energy. Not surprisingly, cross-shelf winds appear to have little effect. Analysis of the model runs leads to quantitative relations for the wind effect on eddy kinetic energy for the equilibrium density stratification (which increases as the cooling rate increases) and for eddy length scale.


2012 ◽  
Vol 69 (10) ◽  
pp. 3028-3039 ◽  
Author(s):  
Elizabeth A. Barnes ◽  
Chaim I. Garfinkel

Abstract As the surface drag is increased in a comprehensive general circulation model (GCM), the upper-level zonal winds decrease and eddy momentum flux convergence into the jet core increases. Globally averaged eddy kinetic energy decreases, a response that is inconsistent with the conventional barotropic governor mechanism whereby decreased barotropic shears encourage baroclinic wave growth. As the conventional barotropic governor appears insufficient to explain the entire response in the comprehensive GCM, the nondivergent barotropic model on the sphere is used to demonstrate an additional mechanism for the effect of surface drag on eddy momentum fluxes and eddy kinetic energy. Analysis of the pseudomomentum budget shows that increased drag modifies the background meridional vorticity gradient, which allows for enhanced eddy momentum flux convergence and decreased eddy kinetic energy in the presence of a constant eddy source. This additional feedback may explain the changes in eddy momentum fluxes observed in the comprehensive GCM and was likely present in previous work on the barotropic governor.


2005 ◽  
Vol 288 (1) ◽  
pp. H424-H435 ◽  
Author(s):  
Riccardo Barbieri ◽  
Eric C. Matten ◽  
AbdulRasheed A. Alabi ◽  
Emery N. Brown

Heart rate is a vital sign, whereas heart rate variability is an important quantitative measure of cardiovascular regulation by the autonomic nervous system. Although the design of algorithms to compute heart rate and assess heart rate variability is an active area of research, none of the approaches considers the natural point-process structure of human heartbeats, and none gives instantaneous estimates of heart rate variability. We model the stochastic structure of heartbeat intervals as a history-dependent inverse Gaussian process and derive from it an explicit probability density that gives new definitions of heart rate and heart rate variability: instantaneous R-R interval and heart rate standard deviations. We estimate the time-varying parameters of the inverse Gaussian model by local maximum likelihood and assess model goodness-of-fit by Kolmogorov-Smirnov tests based on the time-rescaling theorem. We illustrate our new definitions in an analysis of human heartbeat intervals from 10 healthy subjects undergoing a tilt-table experiment. Although several studies have identified deterministic, nonlinear dynamical features in human heartbeat intervals, our analysis shows that a highly accurate description of these series at rest and in extreme physiological conditions may be given by an elementary, physiologically based, stochastic model.


2013 ◽  
Vol 43 (9) ◽  
pp. 1862-1879 ◽  
Author(s):  
Leonel Romero ◽  
Yusuke Uchiyama ◽  
J. Carter Ohlmann ◽  
James C. McWilliams ◽  
David A. Siegel

Abstract Knowledge of horizontal relative dispersion in nearshore oceans is important for many applications including the transport and fate of pollutants and the dynamics of nearshore ecosystems. Two-particle dispersion statistics are calculated from millions of synthetic particle trajectories from high-resolution numerical simulations of the Southern California Bight. The model horizontal resolution of 250 m allows the investigation of the two-particle dispersion, with an initial pair separation of 500 m. The relative dispersion is characterized with respect to the coastal geometry, bathymetry, eddy kinetic energy, and the relative magnitudes of strain and vorticity. Dispersion is dominated by the submesoscale, not by tides. In general, headlands are more energetic and dispersive than bays. Relative diffusivity estimates are smaller and more anisotropic close to shore. Farther from shore, the relative diffusivity increases and becomes less anisotropic, approaching isotropy ~10 km from the coast. The degree of anisotropy of the relative diffusivity is qualitatively consistent with that for eddy kinetic energy. The total relative diffusivity as a function of pair separation distance R is on average proportional to R5/4. Additional Lagrangian experiments at higher horizontal numerical resolution confirmed the robustness of these results. Structures of large vorticity are preferably elongated and aligned with the coastline nearshore, which may limit cross-shelf dispersion. The results provide useful information for the design of subgrid-scale mixing parameterizations as well as quantifying the transport and dispersal of dissolved pollutants and biological propagules.


Sign in / Sign up

Export Citation Format

Share Document