scholarly journals Variations of cloudiness, precipitable water, and relative humidity over the United States: 1973-1993

1997 ◽  
Vol 24 (1) ◽  
pp. 41-44 ◽  
Author(s):  
William P. Elliott ◽  
James K. Angell
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kevin Lanza ◽  
Melody Alcazar ◽  
Deanna M. Hoelscher ◽  
Harold W. Kohl

Abstract Background Latinx children in the United States are at high risk for nature-deficit disorder, heat-related illness, and physical inactivity. We developed the Green Schoolyards Project to investigate how green features—trees, gardens, and nature trails—in school parks impact heat index (i.e., air temperature and relative humidity) within parks, and physical activity levels and socioemotional well-being of these children. Herein, we present novel methods for a) observing children’s interaction with green features and b) measuring heat index and children’s behaviors in a natural setting, and a selection of baseline results. Methods During two September weeks (high temperature) and one November week (moderate temperature) in 2019, we examined three joint-use elementary school parks in Central Texas, United States, serving predominantly low-income Latinx families. To develop thermal profiles for each park, we installed 10 air temperature/relative humidity sensors per park, selecting sites based on land cover, land use, and even spatial coverage. We measured green features within a geographic information system. In a cross-sectional study, we used an adapted version of System for Observing Play and Recreation in Communities (SOPARC) to assess children’s physical activity levels and interactions with green features. In a cohort study, we equipped 30 3rd and 30 4th grade students per school during recess with accelerometers and Global Positioning System devices, and surveyed these students regarding their connection to nature. Baseline analyses included inverse distance weighting for thermal profiles and summing observed counts of children interacting with trees. Results In September 2019, average daily heat index ranged 2.0 °F among park sites, and maximum daily heat index ranged from 103.4 °F (air temperature = 33.8 °C; relative humidity = 55.2%) under tree canopy to 114.1 °F (air temperature = 37.9 °C; relative humidity = 45.2%) on an unshaded playground. 10.8% more girls and 25.4% more boys interacted with trees in September than in November. Conclusions We found extreme heat conditions at select sites within parks, and children positioning themselves under trees during periods of high heat index. These methods can be used by public health researchers and practitioners to inform the redesign of greenspaces in the face of climate change and health inequities.


2018 ◽  
Vol 33 (1) ◽  
pp. 301-315 ◽  
Author(s):  
Wesley G. Page ◽  
Natalie S. Wagenbrenner ◽  
Bret W. Butler ◽  
Jason M. Forthofer ◽  
Chris Gibson

Abstract Wildland fire managers in the United States currently utilize the gridded forecasts from the National Digital Forecast Database (NDFD) to make fire behavior predictions across complex landscapes during large wildfires. However, little is known about the NDFDs performance in remote locations with complex topography for weather variables important for fire behavior prediction, including air temperature, relative humidity, and wind speed. In this study NDFD forecasts for calendar year 2015 were evaluated in fire-prone locations across the conterminous United States during periods with the potential for active fire spread using the model performance statistics of root-mean-square error (RMSE), mean fractional bias (MFB), and mean bias error (MBE). Results indicated that NDFD forecasts of air temperature and relative humidity performed well with RMSEs of about 2°C and 10%–11%, respectively. However, wind speed was increasingly underpredicted when observed wind speeds exceeded about 4 m s−1, with MFB and MBE values of approximately −15% and −0.5 m s−1, respectively. The importance of accurate wind speed forecasts in terms of fire behavior prediction was confirmed, and the forecast accuracies needed to achieve “good” surface head fire rate-of-spread predictions were estimated as ±20%–30% of the observed wind speed. Weather station location, the specific forecast office, and terrain complexity had the largest impacts on wind speed forecast error, although the relatively low variance explained by the model (~37%) suggests that other variables are likely to be important. Based on these results it is suggested that wildland fire managers should use caution when utilizing the NDFD wind speed forecasts if high wind speed events are anticipated.


2015 ◽  
Vol 16 (1) ◽  
pp. 70-87 ◽  
Author(s):  
Young-Hee Ryu ◽  
James A. Smith ◽  
Elie Bou-Zeid

Abstract The seasonal and diurnal climatologies of precipitable water and water vapor flux in the mid-Atlantic region of the United States are examined. A new method of computing water vapor flux at high temporal resolution in an atmospheric column using global positioning system (GPS) precipitable water, radiosonde data, and velocity–azimuth display (VAD) wind profiles is presented. It is shown that water vapor flux exhibits striking seasonal and diurnal cycles and that the diurnal cycles exhibit rapid transitions over the course of the year. A particularly large change in the diurnal cycle of meridional water vapor flux between spring and summer seasons is found. These features of the water cycle cannot be resolved by twice-a-day radiosonde observations. It is also shown that precipitable water exhibits a pronounced seasonal cycle and a less pronounced diurnal cycle. There are large contrasts in the climatology of water vapor flux between precipitation and nonprecipitation conditions in the mid-Atlantic region. It is hypothesized that the seasonal transition of large-scale flow environments and the change in the degree of differential heating in the mountainous and coastal areas are responsible for the contrasting diurnal cycle between spring and summer seasons.


2021 ◽  
Author(s):  
Kevin Lanza ◽  
Melody Alcazar ◽  
Deanna M. Hoelscher ◽  
III Harold W. Kohl

Abstract Background: Latinx children in the United States are at high risk for nature-deficit disorder, heat-related illness, and physical inactivity. We developed the Green Schoolyards Project to investigate how green features—trees, gardens, and nature trails—in school parks impact heat index (i.e., air temperature and relative humidity) within parks, and physical activity levels and socioemotional well-being of these children. Herein, we present novel methods for a) observing children’s interaction with green features and b) measuring heat index and children’s behaviors in a natural setting, and a selection of baseline results.Methods: During two September weeks (high temperature) and one November week (moderate temperature) in 2019, we examined three joint-use elementary school parks in Central Texas, United States, serving predominantly low-income Latinx families. To develop thermal profiles for each park, we installed 10 air temperature/relative humidity sensors per park, selecting sites based on land cover, land use, and even spatial coverage. We measured green features within a geographic information system. In a cross-sectional study, we used an adapted version of System for Observing Play and Recreation in Communities (SOPARC) to assess children’s physical activity levels and interactions with green features. In a cohort study, we equipped 30 3rd and 30 4th grade students per school during recess with accelerometers and Global Positioning System devices, and surveyed these students regarding their connection to nature. Baseline analyses included inverse distance weighting for thermal profiles and summing observed counts of children interacting with trees.Results: In September 2019, average daily heat index ranged 2.0°F among park sites, and maximum daily heat index ranged from 103.4°F (air temperature = 33.8°C; relative humidity = 55.2%) under tree canopy to 114.1°F (air temperature = 37.9°C; relative humidity = 45.2%) on an unshaded playground. 10.8% more girls and 25.4% more boys interacted with trees in September than in November.Conclusions: We found extreme heat conditions at select sites within parks, and children positioning themselves under trees during periods of high heat index. These methods can be used by public health researchers and practitioners to inform the redesign of greenspaces in the face of climate change and health inequities.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 884A-884
Author(s):  
Albert Sutherland* ◽  
Mike Schnelle ◽  
Derek Arndt

The American Horticulture Society (AHS) Heat Zone categories have been developed to categorize ornamental plant adaptability to different air temperature climates. These zones, like the Plant Hardiness map showing plant cold hardiness zones within the United States, are primarily north to south zones. Within the Great Plains region of the United States, the AHS Heat Zone categories provide a basic level of plant adaptability to air temperature, but do not account for plant reaction to variations in wind, relative humidity or sunlight. Daily reference evapotranspiration provides a single number that responds to variations in air temperature, wind, relative humidity and sunlight. In Oklahoma, the Oklahoma Mesonet provides a uniform statewide network of weather monitor towers that can be used to accurately calculate both short and tall American Society of Civil Engineers (ASCE) reference evapotranspiration (ref ET) across the entire state. Accumulated daily ref ET values can be used to provide further refinement in categorizing ornamental plant adaptability.


2020 ◽  
Author(s):  
Kevin Lanza ◽  
Melody Alcazar ◽  
Deanna M. Hoelscher ◽  
III Harold W. Kohl

Abstract Background: Latinx children in the United States are at high risk for nature-deficit disorder, heat-related illness, and physical inactivity. We developed the Green Schoolyards Project to investigate how green features—trees, gardens, and nature trails—in school parks impact heat index (i.e., air temperature and relative humidity) within parks, and physical activity levels and socioemotional well-being of these children. Herein, we present novel methods for a) observing children’s interaction with green features and b) measuring heat index and children’s behaviors in a natural setting, and a selection of baseline results.Methods: During two September weeks (high temperature) and one November week (moderate temperature) in 2019, we examined three joint-use elementary school parks in Central Texas, United States, serving predominantly low-income Latinx families. To develop thermal profiles for each park, we installed 10 air temperature/relative humidity sensors per park, selecting sites based on land cover, land use, and even spatial coverage. We measured green features within a geographic information system. In a cross-sectional study, we used an adapted version of System for Observing Play and Recreation in Communities (SOPARC) to assess children’s physical activity levels and interactions with green features. In a cohort study, we equipped 30 3rd and 30 4th grade students per school during recess with accelerometers and Global Positioning System devices, and surveyed these students regarding their connection to nature. Baseline analyses included inverse distance weighting for thermal profiles and summing observed counts of children interacting with trees.Results: In September 2019, average daily heat index ranged 2.0°F among park sites, and maximum daily heat index ranged from 103.4°F (air temperature = 33.8°C; relative humidity = 55.2%) under tree canopy to 114.1°F (air temperature = 37.9°C; relative humidity = 45.2%) on an unshaded playground. 10.8% more girls and 25.4% more boys interacted with trees in September than in November.Conclusions: We found extreme heat conditions at select sites within parks, and children positioning themselves under trees during periods of high heat index. These methods can be used by public health researchers and practitioners to inform the redesign of greenspaces in the face of climate change and health inequities.


1960 ◽  
Vol 41 (2) ◽  
pp. 79-87 ◽  
Author(s):  
Clayton H. Reitan

Mean monthly values of precipitable water for about 50 stations in the United States are used to describe the amount and variation of moisture over the area. The average precipitable water over the United States is found to be 1.75 cm and to range from 0.94 cm in February to 2.99 cm in July. Monthly and yearly averages for the period 1946 to 1956 indicate that there is considerable variation on a monthly and sectional basis but that the yearly and overall area amounts of precipitable water are rather stable.


Sign in / Sign up

Export Citation Format

Share Document