scholarly journals A high precision manometric system for absolute calibrations of CO2in dry air

1997 ◽  
Vol 102 (D5) ◽  
pp. 5885-5894 ◽  
Author(s):  
Cong Long Zhao ◽  
Pieter P. Tans ◽  
Kirk W. Thoning
Keyword(s):  
2019 ◽  
Vol 12 (5) ◽  
pp. 2665-2677 ◽  
Author(s):  
Emmanuel Arzoumanian ◽  
Felix R. Vogel ◽  
Ana Bastos ◽  
Bakhram Gaynullin ◽  
Olivier Laurent ◽  
...  

Abstract. CO2 emission estimates from urban areas can be obtained with a network of in situ instruments measuring atmospheric CO2 combined with high-resolution (inverse) transport modelling. Because the distribution of CO2 emissions is highly heterogeneous in space and variable in time in urban areas, gradients of atmospheric CO2 (here, dry air mole fractions) need to be measured by numerous instruments placed at multiple locations around and possibly within these urban areas. This calls for the development of lower-cost medium-precision sensors to allow a deployment at required densities. Medium precision is here set to be a random error (uncertainty) on hourly measurements of ±1 ppm or less, a precision requirement based on previous studies of network design in urban areas. Here we present tests of newly developed non-dispersive infrared (NDIR) sensors manufactured by Senseair AB performed in the laboratory and at actual field stations, the latter for CO2 dry air mole fractions in the Paris area. The lower-cost medium-precision sensors are shown to be sensitive to atmospheric pressure and temperature conditions. The sensors respond linearly to CO2 when measuring calibration tanks, but the regression slope between measured and assigned CO2 differs between individual sensors and changes with time. In addition to pressure and temperature variations, humidity impacts the measurement of CO2, with all of these factors resulting in systematic errors. In the field, an empirical calibration strategy is proposed based on parallel measurements with the lower-cost medium-precision sensors and a high-precision instrument cavity ring-down instrument for 6 months. The empirical calibration method consists of using a multivariable regression approach, based on predictors of air temperature, pressure and humidity. This error model shows good performances to explain the observed drifts of the lower-cost medium-precision sensors on timescales of up to 1–2 months when trained against 1–2 weeks of high-precision instrument time series. Residual errors are contained within the ±1 ppm target, showing the feasibility of using networks of HPP3 instruments for urban CO2 networks. Provided that they could be regularly calibrated against one anchor reference high-precision instrument these sensors could thus collect the CO2 (dry air) mole fraction data required as for top-down CO2 flux estimates.


2020 ◽  
Vol 58 (8) ◽  
pp. 5804-5819
Author(s):  
Tamer F. Refaat ◽  
Mulugeta Petros ◽  
Upendra N. Singh ◽  
Charles W. Antill ◽  
Ruben G. Remus

Author(s):  
J. C. Russ ◽  
T. Taguchi ◽  
P. M. Peters ◽  
E. Chatfield ◽  
J. C. Russ ◽  
...  

Conventional SAD patterns as obtained in the TEM present difficulties for identification of materials such as asbestiform minerals, although diffraction data is considered to be an important method for making this purpose. The preferred orientation of the fibers and the spotty patterns that are obtained do not readily lend themselves to measurement of the integrated intensity values for each d-spacing, and even the d-spacings may be hard to determine precisely because the true center location for the broken rings requires estimation. We have implemented an automatic method for diffraction pattern measurement to overcome these problems. It automatically locates the center of patterns with high precision, measures the radius of each ring of spots in the pattern, and integrates the density of spots in that ring. The resulting spectrum of intensity vs. radius is then used just as a conventional X-ray diffractometer scan would be, to locate peaks and produce a list of d,I values suitable for search/match comparison to known or expected phases.


Author(s):  
K. Z. Botros ◽  
S. S. Sheinin

The main features of weak beam images of dislocations were first described by Cockayne et al. using calculations of intensity profiles based on the kinematical and two beam dynamical theories. The feature of weak beam images which is of particular interest in this investigation is that intensity profiles exhibit a sharp peak located at a position very close to the position of the dislocation in the crystal. This property of weak beam images of dislocations has an important application in the determination of stacking fault energy of crystals. This can easily be done since the separation of the partial dislocations bounding a stacking fault ribbon can be measured with high precision, assuming of course that the weak beam relationship between the positions of the image and the dislocation is valid. In order to carry out measurements such as these in practice the specimen must be tilted to "good" weak beam diffraction conditions, which implies utilizing high values of the deviation parameter Sg.


Author(s):  
Klaus-Ruediger Peters

Differential hysteresis processing is a new image processing technology that provides a tool for the display of image data information at any level of differential contrast resolution. This includes the maximum contrast resolution of the acquisition system which may be 1,000-times higher than that of the visual system (16 bit versus 6 bit). All microscopes acquire high precision contrasts at a level of <0.01-25% of the acquisition range in 16-bit - 8-bit data, but these contrasts are mostly invisible or only partially visible even in conventionally enhanced images. The processing principle of the differential hysteresis tool is based on hysteresis properties of intensity variations within an image.Differential hysteresis image processing moves a cursor of selected intensity range (hysteresis range) along lines through the image data reading each successive pixel intensity. The midpoint of the cursor provides the output data. If the intensity value of the following pixel falls outside of the actual cursor endpoint values, then the cursor follows the data either with its top or with its bottom, but if the pixels' intensity value falls within the cursor range, then the cursor maintains its intensity value.


1991 ◽  
Vol 1 (12) ◽  
pp. 1669-1673 ◽  
Author(s):  
Hans Gerd Evertz ◽  
Martin Hasenbusch ◽  
Mihail Marcu ◽  
Klaus Pinn ◽  
Sorin Solomon

Sign in / Sign up

Export Citation Format

Share Document