Diel variability of soluble Fe(II) and soluble total Fe in North African dust in the trade winds at Barbados

1997 ◽  
Vol 102 (D17) ◽  
pp. 21297-21305 ◽  
Author(s):  
X. R. Zhu ◽  
J. M. Prospero ◽  
F. J. Millero
2008 ◽  
Vol 52 (8) ◽  
pp. 823-832 ◽  
Author(s):  
Joseph M. Prospero ◽  
Edmund Blades ◽  
Raana Naidu ◽  
George Mathison ◽  
Haresh Thani ◽  
...  

2021 ◽  
Vol 554 ◽  
pp. 116645
Author(s):  
Amy M. Jewell ◽  
Nick Drake ◽  
Anya J. Crocker ◽  
Natalie L. Bakker ◽  
Tereza Kunkelova ◽  
...  

1997 ◽  
Vol 102 (D10) ◽  
pp. 11225-11238 ◽  
Author(s):  
Kevin D. Perry ◽  
Thomas A. Cahill ◽  
Robert A. Eldred ◽  
Dabrina D. Dutcher ◽  
Thomas E. Gill

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1090
Author(s):  
Raquel Fernandes ◽  
Marcelo Fragoso

Heatwaves are an extreme meteorological event in which affected populations may also be exposed to deteriorated air quality conditions due to the increase in air pollutant concentrations, such as PM10 (particulate matter < 10 µg/m3). In order to identify heatwaves (1973–2019) in the region of Faro (Algarve) during the hot season (April–September), the Excess Heat Factor (EHF) index was applied. The Mann–Kendall test revealed an upward trend in three heatwave metrics in Faro, and the trend of accumulated heat load (EHF load) was also positive as would be expected, but its signal was not statistically significant. An inventory of North African dust events (2006–2019) was made, and their simultaneous occurrence with heatwaves was assessed, pointing to only 20% of dust events of the Sahara occurring simultaneously with heatwave days. A cluster analysis was conducted on daily geopotential height fields at 850 hPa level over the 2006–2019 period, and four distinct patterns were identified as the most prominent synoptic circulations promoting both heatwave conditions and North African dust over the Algarve.


2020 ◽  
Vol 20 (16) ◽  
pp. 10047-10062 ◽  
Author(s):  
Samantha J. Kramer ◽  
Claudia Alvarez ◽  
Anne E. Barkley ◽  
Peter R. Colarco ◽  
Lillian Custals ◽  
...  

Abstract. North African dust reaches the southeastern United States every summer. Size-resolved dust mass measurements taken in Miami, Florida, indicate that more than one-half of the surface dust mass concentrations reside in particles with geometric diameters less than 2.1 µm, while vertical profiles of micropulse lidar depolarization ratios show dust reaching above 4 km during pronounced events. These observations are compared to the representation of dust in the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) aerosol reanalysis and closely related Goddard Earth Observing System model version 5 (GEOS-5) Forward Processing (FP) aerosol product, both of which assimilate satellite-derived aerosol optical depths using a similar protocol and inputs. These capture the day-to-day variability in aerosol optical depth well, in a comparison to an independent sun-photometer-derived aerosol optical depth dataset. Most of the modeled dust mass resides in diameters between 2 and 6 µm, in contrast to the measurements. Model-specified mass extinction efficiencies equate light extinction with approximately 3 times as much aerosol mass, in this size range, compared to the measured dust sizes. GEOS-5 FP surface-layer sea salt mass concentrations greatly exceed observed values, despite realistic winds and relative humidities. In combination, these observations help explain why, despite realistic total aerosol optical depths, (1) free-tropospheric model volume extinction coefficients are lower than those retrieved from the micro-pulse lidar, suggesting too-low model dust loadings in the free troposphere, and (2) model dust mass concentrations near the surface can be higher than those measured. The modeled vertical distribution of dust, when captured, is reasonable. Large, aspherical particles exceeding the modeled dust sizes are also occasionally present, but dust particles with diameters exceeding 10 µm contribute little to the measured total dust mass concentrations after such long-range transport. Remaining uncertainties warrant a further integrated assessment to confirm this study's interpretations.


2020 ◽  
Author(s):  
Samantha J. Kramer ◽  
Claudia Alvarez ◽  
Anne Barkley ◽  
Peter R. Colarco ◽  
Lillian Custals ◽  
...  

Abstract. North African dust reaches the southeast United States every summer. Measurements taken in Miami, Florida indicate that more than one-half of the surface dust mass concentrations reside in particles with diameters less than 2.1 μm, while vertical profiles of micropulse lidar depolarization ratios show dust reaching above four km during pronounced events. These observations are compared to the representation of dust in the MERRA-2 aerosol reanalysis and closely-related GEOS-5 Forward Processing (FP) aerosol product, both of which assimilate satellite-derived aerosol optical depths using a similar protocol and inputs. These capture the day-to-day variability in aerosol optical depth well, in a comparison to an independent sun-photometer-derived aerosol optical depth dataset. Measured near-surface dust mass concentrations slightly exceed model values, with most of the modeled dust mass in diameters between 2–6 μm. Modeled-specified mass extinction efficiencies equate light extinction with approximately three times as much aerosol mass, in this size range, compared to the measured dust sizes. GEOS-5 FP surface-layer sea salt mass concentrations greatly exceed observed values, despite realistic winds and relative humidities. In combination, these observations help explain, why, despite realistic total aerosol optical depths, 1) free-tropospheric model volume extinction coefficients are lower than those retrieved from the micro-pulse lidar, suggesting too low model dust loadings, and 2) model dust mass concentrations near the surface are higher than those measured. The modeled vertical distribution of dust, when captured, is reasonable. Large, aspherical particles exceeding the modeled dust sizes are also occasionally present, but dust particles with diameters exceeding ten μm contribute little to the measured total dust mass concentrations after such long-range transport. A further integrated assessment is needed to confirm this study's interpretations.


2019 ◽  
Vol 53 (7-8) ◽  
pp. 4311-4336 ◽  
Author(s):  
Athanasios Tsikerdekis ◽  
Prodromos Zanis ◽  
Aristeidis K. Georgoulias ◽  
Georgia Alexandri ◽  
Eleni Katragkou ◽  
...  

2019 ◽  
Vol 106 ◽  
pp. 105530 ◽  
Author(s):  
Konstantinos Dimitriou ◽  
Pavlos Kassomenos
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document