New permittivity measurements of seawater

Radio Science ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 639-648 ◽  
Author(s):  
W. Ellison ◽  
A. Balana ◽  
G. Delbos ◽  
K. Lamkaouchi ◽  
L. Eymard ◽  
...  
Measurement ◽  
2021 ◽  
Vol 175 ◽  
pp. 109114
Author(s):  
Sara Blazquez-Bello ◽  
Yolanda Campos-Roca ◽  
Axel Bangert ◽  
Carl Sandhagen

2008 ◽  
Vol 44 (7) ◽  
pp. 1768-1772 ◽  
Author(s):  
N.N. Al-Moayed ◽  
M.N. Afsar ◽  
U.A. Khan ◽  
S. McCooey ◽  
M. Obol

1996 ◽  
Author(s):  
Chriss A. Jones ◽  
John H. Grosvenor ◽  
Yehuda Kantor

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1173
Author(s):  
Ilze Beverte ◽  
Ugis Cabulis ◽  
Sergejs Gaidukovs

As a non-metallic composite material, widely applied in industry, rigid polyurethane (PUR) foams require knowledge of their dielectric properties. In experimental determination of PUR foams’ dielectric properties protection of one-side capacitive sensor’s active area from adverse effects caused by the PUR foams’ test objects has to be ensured. In the given study, the impact of polytetrafluoroethylene (PTFE) films, thickness 0.20 mm and 0.04 mm, in covering or simulated coating the active area of one-side access capacitive sensor’ electrodes on the experimentally determined true dielectric permittivity spectra of rigid PUR foams is estimated. Penetration depth of the low frequency excitation field into PTFE and PUR foams is determined experimentally. Experiments are made in order to evaluate the difference between measurements on single PUR foams’ samples and on complex samples “PUR foams + PTFE film” with two calibration modes. A modification factor and a small modification criterion are defined and values of modifications are estimated in numerical calculations. Conclusions about possible practical applications of PTFE films in dielectric permittivity measurements of rigid PUR foams with one-side access capacitive sensor are made.


Author(s):  
F. Demontoux ◽  
M. Gati ◽  
M. el Boudali ◽  
L. Villard ◽  
JP Wigneron ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-69
Author(s):  
Artur Posenato Garcia ◽  
Zoya Heidari

The dielectric response of rocks results from electric double layer (EDL), Maxwell-Wagner (MW), and dipolar polarizations. The EDL polarization is a function of solid-fluid interfaces, pore water, and pore geometry. MW and dipolar polarizations are functions of charge accumulation at the interface between materials with contrasting impedances and the volumetric concentration of its constituents, respectively. However, conventional interpretation of dielectric measurements only accounts for volumetric concentrations of rock components and their permittivities, not interfacial properties such as wettability. Numerical simulations of dielectric response of rocks provides an ideal framework to quantify the impact of wettability and water saturation ( Sw) on electric polarization mechanisms. Therefore, in this paper we introduce a numerical simulation method to compute pore-scale dielectric dispersion effects in the interval from 100 Hz to 1 GHz including impacts of pore structure, Sw, and wettability on permittivity measurements. We solve the quasi-electrostatic Maxwell's equations in three-dimensional (3D) pore-scale rock images in the frequency domain using the finite volume method. Then, we verify simulation results for a spherical material by comparing with the corresponding analytical solution. Additionally, we introduce a technique to incorporate α-polarization to the simulation and we verify it by comparing pore-scale simulation results to experimental measurements on a Berea sandstone sample. Finally, we quantify the impact of Sw and wettability on broadband dielectric permittivity measurements through pore-scale numerical simulations. The numerical simulation results show that mixed-wet rocks are more sensitive than water-wet rocks to changes in Sw at sub-MHz frequencies. Furthermore, permittivity and conductivity of mixed-wet rocks have weaker and stronger dispersive behaviors, respectively, when compared to water-wet rocks. Finally, numerical simulations indicate that conductivity of mixed-wet rocks can vary by three orders of magnitude from 100 Hz to 1 GHz. Therefore, Archie’s equation calibrated at the wrong frequency could lead to water saturation errors of 73%.


Sign in / Sign up

Export Citation Format

Share Document