Crustacea Tanaidacea of the Antarctic and the Subantarctic: 1. On Material Collected at Tierra del Fuego, Isla de los Estados, and the West Coast of the Antarctic Peninsula

10.1029/ar045 ◽  
1986 ◽  
Author(s):  
Jürgen Sieg
Polar Record ◽  
2009 ◽  
Vol 46 (3) ◽  
pp. 279-281 ◽  
Author(s):  
Eric J Woehler ◽  
Louise Blight ◽  
Ian Bullock

Eckener Point (64° 26′S; 61° 36′W) lies on the northeast side of the entrance to Charlotte Bay and southeast of Murray Island, on the west coast of Graham Land, Antarctic Peninsula (Fig. 1). Data from a 1987 census (Woehler 1993) show 40 breeding pairs of chinstrap penguins Pygoscelis antarctica at the site. An unpublished report of 180 nests of blue-eyed cormorant Phalacrocorax atriceps/bransfieldensis (S Poncet, personal communication, 2004) in 1983 is the only other ornithological record for the site. Here we report on the results of a brief survey conducted to document the breeding seabirds for this locality. Suitable ice-free sites on the Antarctic Peninsula are limited, and Eckener Point, though small, provides nesting habitat for a high number of avian species. Plant and lichen diversity also appears unusually high.


2005 ◽  
Vol 51 (175) ◽  
pp. 555-560 ◽  
Author(s):  
Adrian J. Fox ◽  
David G. Vaughan

AbstractIn recent decades, several ice shelves along the Antarctic Peninsula have diminished in size as a result of climate warming. Using aerial photographic, satellite and survey data we document a similar retreat of Jones Ice Shelf, which was another small ice shelf on the west coast of the Antarctic Peninsula. This ice shelf was roughly stable between 1947 and 1969, but in the early 1970s it began to retreat and had completely disappeared by early 2003. Jones Ice Shelf has two ice fronts only a few kilometres apart and its retreat provides a unique opportunity to examine how different ice fronts retreat when subjected to similar climate forcing. We mapped the retreat of both the east and west ice fronts of Jones Ice Shelf and found that, although individual episodes of retreat may be related to particularly warm summers, the overall progress of retreat of the two ice fronts has been rather different. This suggests that in this case the course of retreat is controlled by the geometry of the embayment and location of pinning points as well as climatic events.


Oryx ◽  
1982 ◽  
Vol 16 (5) ◽  
pp. 430-430
Author(s):  
Peter Kinnear

Nigel Bonner has documented sightings of humpbacks Megaptera novaeangliae off the west coast of the Antarctic Peninsula which seem to indicate some recovery of stocks (Oryx 16, 3: 231–232). It may therefore be worth placing on record the following sightings of this species made from Argentine Islands for 1970/72, when I was stationed at the British Antarctic Survey base.


Polar Record ◽  
1979 ◽  
Vol 19 (123) ◽  
pp. 605-612

Five main British Antarctic Survey stations were occupied throughout the year. These were Faraday and Halley (the two geophysical observatories), Signy (the main biological station), Grytviken (a multi-disciplinary sub-Antarctic station and centre for the Offshore Biological Programme) and Rothera (the centre for earth sciences programmes). During the 1978 winter, routine programmes were maintained by 69 men who also made preparations for the forthcoming summer season. The two BAS ships, RRS John Biscoe and RRS Bransfield, with assistance from two Twin Otter aircraft relieved the stations, as usual, and assisted summer field workers. With the early recall of John Biscoe to undergo a major refit, invaluable support was also given by HMS Endurance, especially in the Trinity Peninsula area. Apart from Rothera, relief was completed by the end of January 1979 and, in marked contrast to some years, Halley was reached without difficulty. Persistent sea ice late into the season in the southern part of the west coast of the Antarctic Peninsula meant that Rothera could not be reached by Bransfield until mid-February. However, the season saw the completion of the new Rothera station, some major rebuilding at Faraday (originally constructed in 1954) and the installation of a new ionospherics laboratory at Halley. As with the design of the 1973 Halley station, the Rothera complex has aroused considerable international interest.


1998 ◽  
Vol 27 ◽  
pp. 571-575 ◽  
Author(s):  
J. C. King ◽  
S. A. Harangozo

Temperature records from slations on the west roast of the Antarctic Peninsula show a very high level of interannual variability and, over the last 50 years, larger warming trends than are seen elsewhere in Antarctica. in this paper we investigate the role of atmospheric circulation variability and sea-ice extent variations in driving these changes. Owing to a lack of independent data, the reliability of Antarctic atmospheric analyses produced in the 1950s and 1960s cannot be readily established, but examination of the available data suggests that there has been an increase in the northerly component of the circulation over the Peninsula since the late 1950s. Few observations of sea-ice extent are available prior to 1973, but the limited data available indicate that the ice edge to the west of the Peninsula lay to the north of recently observed extremes during the very cold conditions prevailing in the late 1950s. The ultimate cause of the atmospheric-circulation changes remains to be determined and may lie outside the Antarctic region.


2014 ◽  
Vol 8 (3) ◽  
pp. 2995-3035 ◽  
Author(s):  
N. Schön ◽  
A. Zammit-Mangion ◽  
J. L. Bamber ◽  
J. Rougier ◽  
T. Flament ◽  
...  

Abstract. The Antarctic Ice Sheet is the largest potential source of future sea-level rise. Mass loss has been increasing over the last two decades in the West Antarctic Ice Sheet (WAIS), but with significant discrepancies between estimates, especially for the Antarctic Peninsula. Most of these estimates utilise geophysical models to explicitly correct the observations for (unobserved) processes. Systematic errors in these models introduce biases in the results which are difficult to quantify. In this study, we provide a statistically rigorous, error-bounded trend estimate of ice mass loss over the WAIS from 2003–2009 which is almost entirely data-driven. Using altimetry, gravimetry, and GPS data in a hierarchical Bayesian framework, we derive spatial fields for ice mass change, surface mass balance, and glacial isostatic adjustment (GIA) without relying explicitly on forward models. The approach we use separates mass and height change contributions from different processes, reproducing spatial features found in, for example, regional climate and GIA forward models, and provides an independent estimate, which can be used to validate and test the models. In addition, full spatial error estimates are derived for each field. The mass loss estimates we obtain are smaller than some recent results, with a time-averaged mean rate of −76 ± 15 GT yr−1 for the WAIS and Antarctic Peninsula (AP), including the major Antarctic Islands. The GIA estimate compares very well with results obtained from recent forward models (IJ05-R2) and inversion methods (AGE-1). Due to its computational efficiency, the method is sufficiently scalable to include the whole of Antarctica, can be adapted for other ice sheets and can easily be adapted to assimilate data from other sources such as ice cores, accumulation radar data and other measurements that contain information about any of the processes that are solved for.


2018 ◽  
Vol 12 (2) ◽  
pp. 577-594 ◽  
Author(s):  
Thorsten Seehaus ◽  
Alison J. Cook ◽  
Aline B. Silva ◽  
Matthias Braun

Abstract. The climatic conditions along the northern Antarctic Peninsula have shown significant changes within the last 50 years. Here we present a comprehensive analysis of temporally and spatially detailed observations of the changes in ice dynamics along both the east and west coastlines of the northern Antarctic Peninsula. Temporal evolutions of glacier area (1985–2015) and ice surface velocity (1992–2014) are derived from a broad multi-mission remote sensing database for 74 glacier basins on the northern Antarctic Peninsula ( <  65° S along the west coast and north of the Seal Nunataks on the east coast). A recession of the glaciers by 238.81 km2 is found for the period 1985–2015, of which the glaciers affected by ice shelf disintegration showed the largest retreat by 208.59 km2. Glaciers on the east coast north of the former Prince Gustav Ice Shelf extent in 1986 receded by only 21.07 km2 (1985–2015) and decelerated by about 58 % on average (1992–2014). A dramatic acceleration after ice shelf disintegration with a subsequent deceleration is observed at most former ice shelf tributaries on the east coast, combined with a significant frontal retreat. In 2014, the flow speed of the former ice shelf tributaries was 26 % higher than before 1996. Along the west coast the average flow speeds of the glaciers increased by 41 %. However, the glaciers on the western Antarctic Peninsula revealed a strong spatial variability of the changes in ice dynamics. By applying a hierarchical cluster analysis, we show that this is associated with the geometric parameters of the individual glacier basins (hypsometric indexes, maximum surface elevation of the basin, flux gate to catchment size ratio). The heterogeneous spatial pattern of ice dynamic evolutions at the northern Antarctic Peninsula shows that temporally and spatially detailed observations as well as further monitoring are necessary to fully understand glacier change in regions with such strong topographic and climatic variances.


1939 ◽  
Vol 59 (3) ◽  
pp. 791-800 ◽  
Author(s):  
Oskar Carlgren

The collection of Actiniaria and Zoantharia made by the Scottish National Antarctic Expedition contains nineteen species, one of which, Porponia antarctica Carlgren, I described as a new species in 1914. In all there were six species from the Antarctic, three from the Falkland Islands, six from the west coast of Cape Province, three from the Cape Verde Islands, and one, not specifically determined, from Gough Island. The new species here described are Epiactis vincentina, Epiactis brucei, Sicyonis antarctica, and Palythoa vincentina. I have not thought it necessary to compile a complete list of the literature and synonyms of the species, since in the papers cited full information is given.


Polar Record ◽  
1971 ◽  
Vol 15 (99) ◽  
pp. 887-889 ◽  
Author(s):  
Terence Armstrong

For the last twenty years there has been considerable Soviet interest in the circumnavigation of Antarctica by the Russian naval expedition of 1819–21, led by Captain T. T. Bellingshausen, with Lieut M. P. Lazarev as his second in command, in the sloops Vostok and Mirnyy. It is now reasonably certain that Bellingshausen sighted the Antarctic continent several times, notably on 27 January 1820 (New Style) at a point about lat 69°21′S, long 2°14′W, and was thus the first to see it (Edward Bransfield sighted the north-west coast of the Antarctic Peninsula at about lat 63°50′S, long 60°30′W on 30 January 1820, three days later). Bellingshausen did not claim to have done so however, but his descriptions of what he saw tally very well with what the edge of the continent here is now known to look like. There is one relatively new point. Bellingshausen's first sighting has been moved forward one day, from the 28th to the 27th, because it has been shown that he was keeping ship's time, from mid-day to mid-day, and therefore that what his log called the 28th (his sighting being in the second half of the day) was what the civil calendar would call the 27th (Belov, 1963, p 19–29). All this much is well documented and unlikely to be disputed. The question is, how much importance did he, and his contemporaries, attach to this discovery? And did he realize that he had seen the edge of a continent? Recent Soviet studies have sought to show that he had a very good idea of the importance of what he had seen, and that this idea did get through to his contemporaries. It is here that there is room for argument with the Soviet scholars.


Sign in / Sign up

Export Citation Format

Share Document