Seasonal and Regional Variability of Parameters for Stochastic Daily Precipitation Models: South Dakota, U.S.A.

1986 ◽  
Vol 22 (6) ◽  
pp. 965-978 ◽  
Author(s):  
D. A. Woolhiser ◽  
José Roldán
2019 ◽  
Vol 58 (4) ◽  
pp. 875-886 ◽  
Author(s):  
Steve T. Stegall ◽  
Kenneth E. Kunkel

AbstractThe CMIP5 decadal hindcast (“Hindcast”) and prediction (“Predict”) experiment simulations from 11 models were analyzed for the United States with respect to two metrics of extreme precipitation: the 10-yr return level of daily precipitation, derived from the annual maximum series of daily precipitation, and the total precipitation exceeding the 99.5th percentile of daily precipitation. Both Hindcast simulations and observations generally show increases for the 1981–2010 historical period. The multimodel-mean Hindcast trends are statistically significant for all regions while the observed trends are statistically significant for the Northeast, Southeast, and Midwest regions. An analysis of CMIP5 simulations driven by historical natural (“HistoricalNat”) forcings shows that the Hindcast trends are generally within the 5th–95th-percentile range of HistoricalNat trends, but those outside that range are heavily skewed toward exceedances of the 95th-percentile threshold. Future projections for 2006–35 indicate increases in all regions with respect to 1981–2010. While there is good qualitative agreement between the observations and Hindcast simulations regarding the direction of recent trends, the multimodel-mean trends are similar for all regions, while there is considerable regional variability in observed trends. Furthermore, the HistoricalNat simulations suggest that observed historical trends are a combination of natural variability and anthropogenic forcing. Thus, the influence of anthropogenic forcing on the magnitude of near-term future changes could be temporarily masked by natural variability. However, continued observed increases in extreme precipitation in the first decade (2006–15) of the “future” period partially confirm the Predict results, suggesting that incorporation of increases in planning would appear prudent.


2009 ◽  
Vol 10 (5) ◽  
pp. 1218-1230 ◽  
Author(s):  
Bruce T. Anderson ◽  
Jingyun Wang ◽  
Suchi Gopal ◽  
Guido Salvucci

Abstract The regional variability in the summertime precipitation over the southwestern United States is studied using stochastic chain-dependent models generated from 70 yr of station-based daily precipitation observations. To begin, the spatiotemporal structure of the summertime seasonal mean precipitation over the southwestern United States is analyzed using two independent spatial cluster techniques. Four optimal clusters are identified, and their structures are robust across the techniques used. Next, regional chain-dependent models—comprising a previously dependent occurrence chain, an empirical rainfall coverage distribution, and an empirical rainfall amount distribution—are constructed over each subregime and are integrated to simulate the regional daily precipitation evolution across the summer season. Results indicate that generally less than 50% of the observed interannual variance of seasonal precipitation in a given region lies outside the regional chain-dependent models’ stochastic envelope of variability; this observed variance, which is not captured by the stochastic model, is sometimes referred to as the “potentially predictable” variance. In addition, only a small fraction of observed years (between 10% and 20% over a given subregime) contain seasonal mean precipitation anomalies that contribute to this potentially predictable variance. Further results indicate that year-to-year variations in daily rainfall coverage are the largest contributors to potentially predictable seasonal mean rainfall anomalies in most regions, whereas variations in daily rainfall frequency contribute the least. A brief analysis for one region highlights how the identification of years with potentially predictable precipitation characteristics can be used to better understand large-scale circulation patterns that modulate the underlying daily rainfall processes responsible for year-to-year variations in regional rainfall.


2021 ◽  
Author(s):  
Philipp Zschenderlein ◽  
Heini Wernli

Abstract. Precipitation and surface temperature are two of the most important variables that describe our weather and climate. Several previous studies investigated aspects of their relationship, for instance the climatological dependence of daily precipitation on daily mean temperature, P(T). However, the role of specific weather systems in shaping this relationship has not been analysed yet. This study therefore identifies the weather systems (WS) that are associated with intense precipitation days as a function of T, focusing on the question how this relationship, symbolically expressed as P(T,WS), varies regionally across the Northern Hemisphere and between seasons. To this end, we first quantify, if intense precipitation occurs on climatologically warmer or on colder days, respectively. In winter, over most continental and ocean regions, intense precipitation falls on warmer days apart from the Mediterranean area and regions in the lee of the Rocky Mountains, where intense precipitation is favoured on colder days. In summer, only at high latitudes intense precipitation is favoured on warmer days, whereas continental areas experience intense precipitation on colder days. For selected regions in Europe and North America, we then identify the weather systems that occur preferentially on days with intense precipitation (referred to as wet days). In winter, cyclones are slightly dominant on colder wet days, whereas warm conveyor belts and atmospheric rivers occur preferentially on warmer wet days. In summer, the overall influence of atmospheric rivers increases and the occurrence of weather systems depend less on wet day temperature. Wet days in the lee of the Rocky Mountains are influenced by most likely convective systems in anticyclones. Finally, we investigate P(T,WS) during the wettest and driest season in Central Europe and the Central US. In qualitative agreement with the results from the first part of this study, the wettest winter is warmer than normal in Central Europe but colder in the Central US, and the wettest summer is colder in both regions. The opposite holds for the driest winter and summer, respectively. During these anomalous seasons, both the frequency and the precipitation efficiency of weather systems changes in Central Europe, while the wettest and driest seasons in Central US mainly arise from a modified precipitation efficiency. Our results show that the precipitation-temperature-weather system relationship strongly depends on the region, and that (extreme) seasonal precipitation is influenced by the frequency and precipitation efficiency of the different weather systems. This regional variability is reflected in the relative importance of weather system frequency and efficiency anomalies for the formation of anomalously wet and dry seasons.


2015 ◽  
Vol 16 (2) ◽  
pp. 781-792 ◽  
Author(s):  
Kelly Mahoney ◽  
F. Martin Ralph ◽  
Klaus Wolter ◽  
Nolan Doesken ◽  
Michael Dettinger ◽  
...  

Abstract The climatology of Colorado’s historical extreme precipitation events shows a remarkable degree of seasonal and regional variability. Analysis of the largest historical daily precipitation totals at COOP stations across Colorado by season indicates that the largest recorded daily precipitation totals have ranged from less than 60 mm day−1 in some areas to more than 250 mm day−1 in others. East of the Continental Divide, winter events are rarely among the top 10 events at a given site, but spring events dominate in and near the foothills; summer events are most common across the lower-elevation eastern plains, while fall events are most typical for the lower elevations west of the Divide. The seasonal signal in Colorado’s central mountains is complex; high-elevation intense precipitation events have occurred in all months of the year, including summer, when precipitation is more likely to be liquid (as opposed to snow), which poses more of an instantaneous flood risk. Notably, the historic Colorado Front Range daily rainfall totals that contributed to the damaging floods in September 2013 occurred outside of that region’s typical season for most extreme precipitation (spring–summer). That event and many others highlight the fact that extreme precipitation in Colorado has occurred historically during all seasons and at all elevations, emphasizing a year-round statewide risk.


2009 ◽  
Vol 14 (2) ◽  
pp. 13-16
Author(s):  
Christopher R. Brigham ◽  
Jenny Walker

Abstract The AMAGuides to the Evaluation of Permanent Impairment (AMA Guides) is the most widely used basis for determining impairment and is used in state workers’ compensation systems, federal systems, automobile casualty, and personal injury, as well as by the majority of state workers’ compensation jurisdictions. Two tables summarize the edition of the AMA Guides used and provide information by state. The fifth edition (2000) is the most commonly used edition: California, Delaware, Georgia, Hawaii, Kentucky, New Hampshire, Idaho, Indiana, Iowa, Kentucky, Massachusetts, Nevada, North Dakota, Ohio, Vermont, and Washington. Eleven states use the sixth edition (2007): Alaska, Arizona, Louisiana, Mississippi, Montana, New Mexico, Oklahoma, Pennsylvania, Rhode Island, Tennessee, and Wyoming. Eight states still commonly make use of the fourth edition (1993): Alabama, Arkansas, Kansas, Maine, Maryland, South Dakota, Texas, and West Virginia. Two states use the Third Edition, Revised (1990): Colorado and Oregon. Connecticut does not stipulate which edition of the AMA Guides to use. Six states use their own state specific guidelines (Florida, Illinois, Minnesota, New York, North Carolina, and Wisconsin), and six states do not specify a specific guideline (Michigan, Missouri, Nebraska, New Jersey, South Carolina, and Virginia). Statutes may or may not specify which edition of the AMA Guides to use. Some states use their own guidelines for specific problems and use the Guides for other issues.


1998 ◽  
Vol 43 (12) ◽  
pp. 857-858
Author(s):  
Warren P. Edwards
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document