Escape Decision-Making Under Real Fire and Simulated Fire Conditions

2014 ◽  
Author(s):  
Yang Gao ◽  
Hong Li
Fire Research ◽  
2016 ◽  
Author(s):  
Hélder D. Craveiro ◽  
João Paulo C. Rodrigues ◽  
Luís M. Laím

Cold-formed steel (CFS) profiles with a wide range of cross-section shapes are commonly used in building construction industry. Nowadays several cross-sections can be built using the available standard single sections (C, U, Σ, etc.), namely open built-up and closed built-up cross-sections. This paper reports an extensive experimental investigation on the behavior of single and built-up cold-formed steel columns at both ambient and simulated fire conditions considering the effect of restraint to thermal elongation. The buckling behavior, ultimate loads and failure modes, of different types of CFS columns at both ambient and simulated fire conditions with restraint to thermal elongation, are presented and compared. Regarding the buckling tests at ambient temperature it was observed that the use of built-up cross-sections ensures significantly higher values of buckling loads. Especially for the built-up cross-sections the failure modes were characterized by the interaction of individual buckling modes, namely flexural about the minor axis, distortional and local buckling. Regarding the fire tests, it is clear that the same levels of restraint used in the experimental investigation induce different rates in the generated restraining forces due to thermal elongation of the columns. Another conclusion that can be drawn from the results is that by increasing the level of restraint to thermal elongation the failure of the columns is controlled by the generated restraining forces, whereas for lower levels of restraint the temperature plays a more important role. Hence, higher levels of imposed restraint to thermal elongation will lead to higher values of generated restraining forces and eventually to lower values of critical temperature and time.


PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e32522 ◽  
Author(s):  
Veronika Javůrková ◽  
Arnošt Leoš Šizling ◽  
Jakub Kreisinger ◽  
Tomáš Albrecht

2018 ◽  
Vol 115 (48) ◽  
pp. 12224-12228 ◽  
Author(s):  
Andrew M. Hein ◽  
Michael A. Gil ◽  
Colin R. Twomey ◽  
Iain D. Couzin ◽  
Simon A. Levin

To evade their predators, animals must quickly detect potential threats, gauge risk, and mount a response. Putative neural circuits responsible for these tasks have been isolated in laboratory studies. However, it is unclear whether and how these circuits combine to generate the flexible, dynamic sequences of evasion behavior exhibited by wild, freely moving animals. Here, we report that evasion behavior of wild fish on a coral reef is generated through a sequence of well-defined decision rules that convert visual sensory input into behavioral actions. Using an automated system to present visual threat stimuli to fish in situ, we show that individuals initiate escape maneuvers in response to the perceived size and expansion rate of an oncoming threat using a decision rule that matches dynamics of known loom-sensitive neural circuits. After initiating an evasion maneuver, fish adjust their trajectories using a control rule based on visual feedback to steer away from the threat and toward shelter. These decision rules accurately describe evasion behavior of fish from phylogenetically distant families, illustrating the conserved nature of escape decision-making. Our results reveal how the flexible behavioral responses required for survival can emerge from relatively simple, conserved decision-making mechanisms.


Sign in / Sign up

Export Citation Format

Share Document