Patients’ style of emotional processing moderates the impact of common factors in psychotherapy.

Psychotherapy ◽  
2021 ◽  
Author(s):  
Miriam Brintzinger ◽  
Wolfgang Tschacher ◽  
Katrin Endtner ◽  
Kurt Bachmann ◽  
Michael Reicherts ◽  
...  
2021 ◽  
pp. 107484072110014
Author(s):  
Nancy J. Moules ◽  
Catherine M. Laing ◽  
Wendy Pelletier ◽  
Gregory M. T. Guilcher ◽  
Jennifer A. Chan

While cure rates in pediatric oncology have improved over the past 30 years, childhood cancer remains the second leading cause of death in children aged 1 to 14. Developing therapies often require using cancerous tissues, which may come from deceased donors. Tumor banks collect, store, and distribute these donated samples. While tumor banking is more common, factors that contribute to parents’ decision and the impact of it on the family are not well understood. The purpose of this hermeneutic study was to understand the meaning and impact of tumor banking for parents of children who have died from cancer. Findings suggest that parents donating their child’s tumors unexpectedly found a sense of meaning in their loss. They also found a legacy of their child’s life; the living cells in some ways assisted the parents with grief. Aspects of this sensitive conversation and decision are discussed from the perspective of the parents’ experiences.


2021 ◽  
Author(s):  
Sophie Jacqueline Andree Betka ◽  
David Watson ◽  
Sarah N Garfinkel ◽  
Gaby Pfeifer ◽  
Henrique Sequeira ◽  
...  

Objective: Emotional states are expressed in body and mind through subjective experience of physiological changes. In previous work, subliminal priming of anger prior to lexical decisions increased systolic blood pressure (SBP). This increase predicted the slowing of response times (RT), suggesting that baroreflex-related autonomic changes and their interoceptive (feedback) representations, influence cognition. Alexithymia is a subclinical affective dysfunction characterized by difficulty in identifying emotions. Atypical autonomic and interoceptive profiles are observed in alexithymia. Therefore, we sought to identify mechanisms through which SBP fluctuations during emotional processing might influence decision-making, including whether alexithymia contributes to this relationship. Methods Thirty-two male participants performed an affect priming paradigm and completed the Toronto Alexithymia Scale. Emotional faces were briefly presented (20ms) prior a short-term memory task. RT, accuracy and SBP were recorded on a trial-by-trial basis. Generalized mixed-effects linear models were used to evaluate the impact of emotion, physiological changes, alexithymia score, and their interactions, on performances. Results A main effect of emotion was observed on accuracy. Participants were more accurate on trials with anger primes, compared to neutral priming. Greater accuracy was related to increased SBP. An interaction between SBP and emotion was observed on RT: Increased SBP was associated with RT prolongation in the anger priming condition, yet this relationship was absent under the sadness priming. Alexithymia did not significantly moderate the above relationships. Conclusions Our data suggest that peripheral autonomic responses during affective challenges guide cognitive processes. We discuss our findings in the theoretical framework proposed by Lacey and Lacey (1970).


2019 ◽  
pp. 1-8
Author(s):  
Steven R. Laviolette

Abstract Adolescence represents a highly sensitive period of mammalian neurodevelopment wherein critical synaptic and structural changes are taking place in brain regions involved in cognition, self-regulation and emotional processing. Importantly, neural circuits such as the mesocorticolimbic pathway, comprising the prefrontal cortex, sub-cortical mesolimbic dopamine system and their associated input/output centres, are particularly vulnerable to drug-related insults. Human adolescence represents a life-period wherein many individuals first begin to experiment with recreational drugs such as nicotine and cannabis, both of which are known to profoundly modulate neurochemical signalling within the mesocorticolimbic pathway and to influence both long-term and acute neuropsychiatric symptoms. While a vast body of epidemiological clinical research has highlighted the effects of adolescent exposure to drugs such as nicotine and cannabis on the developing adolescent brain, many of these studies are limited to correlative analyses and rely on retrospective self-reports from subjects, making causal interpretations difficult to discern. The use of pre-clinical animal studies can avoid these issues by allowing for precise temporal and dose-related experimental control over drug exposure during adolescence. In addition, such animal-based research has the added advantage of allowing for in-depth molecular, pharmacological, genetic and neuronal analyses of how recreational drug exposure may set up the brain for neuropsychiatric risk. This review will explore some of the advantages and disadvantages of these models, with a focus on the common, divergent and synergistic effects of adolescent nicotine and cannabis exposure on neuropsychiatric risk.


2010 ◽  
Vol 41 (4) ◽  
pp. 779-788 ◽  
Author(s):  
G. Lelli-Chiesa ◽  
M. J. Kempton ◽  
J. Jogia ◽  
R. Tatarelli ◽  
P. Girardi ◽  
...  

BackgroundThe Met allele of the catechol-O-methyltransferase (COMT) valine-to-methionine (Val158Met) polymorphism is known to affect dopamine-dependent affective regulation within amygdala–prefrontal cortical (PFC) networks. It is also thought to increase the risk of a number of disorders characterized by affective morbidity including bipolar disorder (BD), major depressive disorder (MDD) and anxiety disorders. The disease risk conferred is small, suggesting that this polymorphism represents a modifier locus. Therefore our aim was to investigate how the COMT Val158Met may contribute to phenotypic variation in clinical diagnosis using sad facial affect processing as a probe for its neural action.MethodWe employed functional magnetic resonance imaging to measure activation in the amygdala, ventromedial PFC (vmPFC) and ventrolateral PFC (vlPFC) during sad facial affect processing in family members with BD (n=40), MDD and anxiety disorders (n=22) or no psychiatric diagnosis (n=25) and 50 healthy controls.ResultsIrrespective of clinical phenotype, the Val158 allele was associated with greater amygdala activation and the Met158 allele with greater signal change in the vmPFC and vlPFC. Signal changes in the amygdala and vmPFC were not associated with disease expression. However, in the right vlPFC the Met158 allele was associated with greater activation in all family members with affective morbidity compared with relatives without a psychiatric diagnosis and healthy controls.ConclusionsOur results suggest that the COMT Val158Met polymorphism has a pleiotropic effect within the neural networks subserving emotional processing. Furthermore the Met158 allele further reduces cortical efficiency in the vlPFC in individuals with affective morbidity.


2012 ◽  
Vol 21 (1) ◽  
pp. 82-96 ◽  
Author(s):  
Wolfgang Tschacher ◽  
Ulrich Martin Junghan ◽  
Mario Pfammatter

1994 ◽  
Vol 18 (4) ◽  
pp. 659-672 ◽  
Author(s):  
Teppo Martikainen ◽  
Jukka Perttunen ◽  
Paavo Yli-Olli ◽  
A. Gunasekaran

2022 ◽  
Vol 11 (2) ◽  
pp. 448
Author(s):  
Julia Maruani ◽  
Pierre A. Geoffroy

Light exerts powerful biological effects on mood regulation. Whereas the source of photic information affecting mood is well established at least via intrinsically photosensitive retinal ganglion cells (ipRGCs) secreting the melanopsin photopigment, the precise circuits that mediate the impact of light on depressive behaviors are not well understood. This review proposes two distinct retina–brain pathways of light effects on mood: (i) a suprachiasmatic nucleus (SCN)-dependent pathway with light effect on mood via the synchronization of biological rhythms, and (ii) a SCN-independent pathway with light effects on mood through modulation of the homeostatic process of sleep, alertness and emotion regulation: (1) light directly inhibits brain areas promoting sleep such as the ventrolateral preoptic nucleus (VLPO), and activates numerous brain areas involved in alertness such as, monoaminergic areas, thalamic regions and hypothalamic regions including orexin areas; (2) moreover, light seems to modulate mood through orexin-, serotonin- and dopamine-dependent pathways; (3) in addition, light activates brain emotional processing areas including the amygdala, the nucleus accumbens, the perihabenular nucleus, the left hippocampus and pathways such as the retina–ventral lateral geniculate nucleus and intergeniculate leaflet–lateral habenula pathway. This work synthetizes new insights into the neural basis required for light influence mood


Sign in / Sign up

Export Citation Format

Share Document