Members of highly entitative groups are implicitly expected to behave consistently based on their deep-level goals instead of their shallow-level movements.

Author(s):  
Jun Yin ◽  
Jipeng Duan ◽  
Jiecheng Huangliang ◽  
Yinfeng Hu ◽  
Feng Zhang
Keyword(s):  
2021 ◽  
Vol 21 (9) ◽  
pp. 2064
Author(s):  
Jun Yin ◽  
Jipeng Duan ◽  
Jiecheng Huangliang ◽  
Yinfeng Hu ◽  
Feng Zhang
Keyword(s):  

2000 ◽  
Vol 203 (4) ◽  
pp. 757-764
Author(s):  
P. Rudberg ◽  
O. Sand

In normal recording solution, the swimming pattern of the freshwater ciliate Coleps hirtus, belonging to the class Prostomatea, consists of alternating periods of nearly linear forward swimming and circular swimming within a small area. Current-clamp recordings were performed to elucidate the mechanism for this behaviour. No members of this class have previously been studied using electrophysiological techniques. The ciliates were maintained in culture and fed on the planctonic alga Rhodomonas minuta. The membrane potential showed spontaneous shifts between a more negative (deep) level of approximately −50 mV and a less negative (shallow) level of approximately −30 mV. The input resistance and capacitance at the more negative level were approximately 400 M capomega and 120 pF respectively. C. hirtus displayed a pronounced inward rectification, which was virtually insensitive to 1 mmol l(−1) Cs(+) and almost completely blocked by 1 mmol l(−1) Ba(2+). Depolarising current injections failed to evoke graded, regenerative Ca(2+) spikes. However, current-induced depolarisations from the more negative potential level (−50 mV) showed a pronounced shoulder during the repolarising phase. Increased current injections prolonged the shoulder, which occasionally stabilised at the shallow membrane potential (−30 mV). The membrane potential could be shifted to the deep level by brief hyperpolarising current injections. Similar biphasic membrane properties have not been reported previously in any ciliate. The bistability of the membrane potential was abolished in Ca(2+)-free solution containing Co(2+) or Mg(2+). In Ca(2+)-free solution containing 1 mmol l(−1) Ba(2+), brief depolarising current injections at the deep potential level evoked all-or-nothing action potentials with a prolonged plateau coinciding with the shallow potential. We conclude that the deep membrane potential in C. hirtus corresponds to the traditional resting potential, whereas the shallow level is a Ca(2+)-dependent plateau potential. In normal solution, the direction of the ciliary beat was backwards at the deep potential level and forwards at the shallow membrane potential, probably reflecting the two main phases of the swimming pattern.


1983 ◽  
Vol 44 (C4) ◽  
pp. C4-233-C4-241
Author(s):  
B. Hamilton ◽  
A. R. Peaker ◽  
D. R. Wight
Keyword(s):  

1991 ◽  
Vol 223 ◽  
Author(s):  
A. Vaseashta ◽  
L. C. Burton

ABSTRACTKinetics of persistent photoconductivity, photoquenching, and thermal and optical recovery observed in low energy Ar+ bombarded on (100) GaAs surfaces have been investigated. Rate and transport equations for these processes were derived and simulated employing transport parameters, trap locations and densities determined by deep level transient spectroscopy. Excellent correlation was obtained between the results of preliminary simulation and the experimentally observed values. The exponential decay of persistent photoconductivity response curve was determined to be due to metastable electron traps with longer lifetime and is consistent with an earlier proposed model.


2002 ◽  
Vol 719 ◽  
Author(s):  
Masashi Kato ◽  
Masaya Ichimura ◽  
Eisuke Arai ◽  
Shigehiro Nishino

AbstractEpitaxial layers of 4H-SiC are grown on (0001) substrates inclined toward <1120> and <1100> directions. Defects in these films are characterized by deep level transient spectroscopy (DLTS) in order to clarify the dependence of concentrations and activation energies on substrate inclination. DLTS results show no such dependence on substrate inclination but show thickness dependence of the concentration.


2003 ◽  
Vol 766 ◽  
Author(s):  
V. Ligatchev ◽  
T.K.S. Wong ◽  
T.K. Goh ◽  
Rusli Suzhu Yu

AbstractDefect spectrum N(E) of porous organic dielectric (POD) films is studied with capacitance deep-level-transient-spectroscopy (C-DLTS) in the energy range up to 0.7 eV below conduction band bottom Ec. The POD films were prepared by spin coating onto 200mm p-type (1 – 10 Δcm) single-side polished silicon substrates followed by baking at 325°C on a hot plate and curing at 425°C in furnace. The film thickness is in the 5000 – 6000 Å range. The ‘sandwich’ -type NiCr/POD/p-Si/NiCr test structures showed both rectifying DC current-voltage characteristics and linear 1/C2 vs. DC reverse bias voltage. These confirm the applicability of the C-DLTS technique for defect spectrum deconvolution and the n-type conductivity of the studied films. Isochronal annealing (30 min in argon or 60 min in nitrogen) has been performed over the temperature range 300°C - 650°C. The N(E) distribution is only slightly affected by annealing in argon. However, the distribution depends strongly on the annealing temperature in nitrogen ambient. A strong N(E) peak at Ec – E = 0.55 – 0.60 eV is detected in all samples annealed in argon but this peak is practically absent in samples annealed in nitrogen at Ta < 480°C. On the other hand, two new peaks at Ec – E = 0.12 and 0.20 eV appear in the N(E) spectrum of the samples annealed in nitrogen at Ta = 650°C. The different features of the defect spectrum are attributed to different interactions of argon and nitrogen with dangling carbon bonds on the intra-pore surfaces.


Author(s):  
Nataliya Mitina ◽  
Vladimir Krylov

The results of an experiment to determine the activation energy of a deep level in a gallium arsenide mesastructure, obtained by the method of capacitive deep levels transient spectroscopy with data processing according to the Oreshkin model and Lang model, are considered.


Author(s):  
Aleksey Bogachev ◽  
Vladimir Krylov

The results of an experiment to determine the activation energy of a deep level in a gallium arsenide mesastructure by capacitive relaxation spectroscopy of deep levels at various values of the blocking voltage are considered.


Author(s):  
N. Chinone ◽  
Y. Cho ◽  
R. Kosugi ◽  
Y. Tanaka ◽  
S. Harada ◽  
...  

Abstract A new technique for local deep level transient spectroscopy (DLTS) imaging using super-higher-order scanning nonlinear dielectric microscopy is proposed. Using this technique. SiCVSiC structure samples with different post oxidation annealing conditions were measured. We observed that the local DLTS signal decreases with post oxidation annealing (POA), which agrees with the well-known phenomena that POA reduces trap density. Furthermore, obtained local DLTS images had dark and bright areas, which is considered to show the trap distribution at/near SiCVSiC interface.


Sign in / Sign up

Export Citation Format

Share Document