Teichoic Acids from Bacterial Walls: Structure of Teichoic Acid from the walls of Bacillus subtilis

Nature ◽  
1959 ◽  
Vol 184 (4682) ◽  
pp. 248-249 ◽  
Author(s):  
J. J. ARMSTRONG ◽  
J. BADDILEY ◽  
J. G. BUCHANAN
2008 ◽  
Vol 190 (14) ◽  
pp. 4989-4996 ◽  
Author(s):  
Catarina Baptista ◽  
Mário A. Santos ◽  
Carlos São-José

ABSTRACT Bacteriophage SPP1 targets the host cell membrane protein YueB to irreversibly adsorb and infect Bacillus subtilis. Interestingly, SPP1 still binds to the surface of yueB mutants, although in a completely reversible way. We evaluated here the relevance of a reversible step in SPP1 adsorption and identified the receptor(s) involved. We show that reversible adsorption is impaired in B. subtilis mutants defective in the glucosylation pathway of teichoic acids or displaying a modified chemical composition of these polymers. The results indicate that glucosylated poly(glycerolphosphate) cell wall teichoic acid is the major target for SPP1 reversible binding. Interaction with this polymer is characterized by a fast adsorption rate showing low-temperature dependence, followed by a rapid establishment of an equilibrium state between adsorbed and free phages. This equilibrium is basically determined by the rate of phage dissociation, which exhibits a strong dependence on temperature compatible with an Arrhenius law. This allowed us to determine an activation energy of 22.6 kcal/mol for phage release. Finally, we show that SPP1 reversible interaction strongly accelerates irreversible binding to YueB. Our results support a model in which fast SPP1 adsorption to and desorption from teichoic acids allows SPP1 to scan the bacterial surface for rapid YueB recognition.


2020 ◽  
Vol 11 (16) ◽  
pp. 4106-4118 ◽  
Author(s):  
Emily R. Caudill ◽  
Rodrigo Tapia Hernandez ◽  
Kyle P. Johnson ◽  
James T. O'Rourke ◽  
Lingchao Zhu ◽  
...  

Cationic gold nanoparticle interaction with strains of Bacillus subtilis is dictated by wall teichoic acid structure and composition.


2004 ◽  
Vol 186 (23) ◽  
pp. 7865-7873 ◽  
Author(s):  
Amit P. Bhavsar ◽  
Laura K. Erdman ◽  
Jeffrey W. Schertzer ◽  
Eric D. Brown

ABSTRACT Wall teichoic acids are anionic, phosphate-rich polymers linked to the peptidoglycan of gram-positive bacteria. In Bacillus subtilis, the predominant wall teichoic acid types are poly(glycerol phosphate) in strain 168 and poly(ribitol phosphate) in strain W23, and they are synthesized by the tag and tar gene products, respectively. Growing evidence suggests that wall teichoic acids are essential in B. subtilis; however, it is widely believed that teichoic acids are dispensable under phosphate-limiting conditions. In the work reported here, we carefully studied the dispensability of teichoic acid under phosphate-limiting conditions by constructing three new mutants. These strains, having precise deletions in tagB, tagF, and tarD, were dependent on xylose-inducible complementation from a distal locus (amyE) for growth. The tarD deletion interrupted poly(ribitol phosphate) synthesis in B. subtilis and represents a unique deletion of a tar gene. When teichoic acid biosynthetic proteins were depleted, the mutants showed a coccoid morphology and cell wall thickening. The new wall teichoic acid biogenesis mutants generated in this work and a previously reported tagD mutant were not viable under phosphate-limiting conditions in the absence of complementation. Cell wall analysis of B. subtilis grown under phosphate-limited conditions showed that teichoic acid contributed approximately one-third of the wall anionic content. These data suggest that wall teichoic acid has an essential function in B. subtilis that cannot be replaced by teichuronic acid.


1971 ◽  
Vol 20 (3) ◽  
pp. 442-450 ◽  
Author(s):  
Jean Heijenoort ◽  
Daniele Menjon ◽  
Bernard Flouret ◽  
Jekisiel Szulmajster ◽  
Jean Laporte ◽  
...  

2016 ◽  
Vol 198 (21) ◽  
pp. 2925-2935 ◽  
Author(s):  
Heng Zhao ◽  
Yingjie Sun ◽  
Jason M. Peters ◽  
Carol A. Gross ◽  
Ethan C. Garner ◽  
...  

ABSTRACTThe integrity of the bacterial cell envelope is essential to sustain life by countering the high turgor pressure of the cell and providing a barrier against chemical insults. InBacillus subtilis, synthesis of both peptidoglycan and wall teichoic acids requires a common C55lipid carrier, undecaprenyl-pyrophosphate (UPP), to ferry precursors across the cytoplasmic membrane. The synthesis and recycling of UPP requires a phosphatase to generate the monophosphate form Und-P, which is the substrate for peptidoglycan and wall teichoic acid synthases. Using an optimizedclusteredregularlyinterspacedshortpalindromicrepeat (CRISPR) system with catalytically inactive (“dead”)CRISPR-associated protein9(dCas9)-based transcriptional repression system (CRISPR interference [CRISPRi]), we demonstrate thatB. subtilisrequires either of two UPP phosphatases, UppP or BcrC, for viability. We show that a third predicted lipid phosphatase (YodM), with homology to diacylglycerol pyrophosphatases, can also support growth when overexpressed. Depletion of UPP phosphatase activity leads to morphological defects consistent with a failure of cell envelope synthesis and strongly activates the σM-dependent cell envelope stress response, includingbcrC, which encodes one of the two UPP phosphatases. These results highlight the utility of an optimized CRISPRi system for the investigation of synthetic lethal gene pairs, clarify the nature of theB. subtilisUPP-Pase enzymes, and provide further evidence linking the σMregulon to cell envelope homeostasis pathways.IMPORTANCEThe emergence of antibiotic resistance among bacterial pathogens is of critical concern and motivates efforts to develop new therapeutics and increase the utility of those already in use. The lipid II cycle is one of the most frequently targeted processes for antibiotics and has been intensively studied. Despite these efforts, some steps have remained poorly defined, partly due to genetic redundancy. CRISPRi provides a powerful tool to investigate the functions of essential genes and sets of genes. Here, we used an optimized CRISPRi system to demonstrate functional redundancy of two UPP phosphatases that are required for the conversion of the initially synthesized UPP lipid carrier to Und-P, the substrate for the synthesis of the initial lipid-linked precursors in peptidoglycan and wall teichoic acid synthesis.


1978 ◽  
Vol 85 (2) ◽  
pp. 433-436 ◽  
Author(s):  
Willem R. BOER ◽  
Jan T. M. WOUTERS ◽  
Alistair J. ANDERSON ◽  
A. Ronald ARCHIBALD

1980 ◽  
Vol 29 (2) ◽  
pp. 376-382
Author(s):  
H. K. Kuramitsu ◽  
L. Wondrack ◽  
M. McGuinness

The Streptococcus mutans GS5 glucosyltransferase activities (both water-soluble and -insoluble glucan-synthesizing fractions) were inhibited by purified lipoteichoic acid. In vitro sucrose-dependent colonization of smooth surfaces by strain GS5 was also markedly reduced in the presence of the amphipathic molecules. The inhibition of soluble glucan synthesis by lipoteichoic acid appeared to be competitive with respect to both sucrose and primer dextran T10. These inhibitory effects were dependent on the presence of the fatty acid components of lipoteichoic acid since deacylated lipoteichoic acids did not inhibit glucosyltransferase activity. However, the deacylated molecules did interact with the enzymes since deacylated lipoteichoic acid partially protected the enzyme activity against heat inactivation and also induced the formation of high-molecular-weight enzyme complexes from the soluble glucan-synthesizing fraction. The presence of teichoic acid in high-molecular-weight aggregates of glucosyltransferase isolated from the culture fluids of strain GS5 was suggested by the detection of polyglycerophosphate in these fractions. In addition to strain GS5, two other organisms containing polyglycerophosphate teichoic acids, Lactobacillus casei and Lactobacillus fermentum , were demonstrated to bind glucosyltransferase activity. These results are discussed relative to the potential role of teichoic acid-glucosyltransferase interactions in enzyme binding to the cell surface of S. mutans and the formation of high-molecular-weight enzyme aggregates in the culture fluids of the organism.


2007 ◽  
Vol 190 (5) ◽  
pp. 1812-1821 ◽  
Author(s):  
Alex Formstone ◽  
Rut Carballido-López ◽  
Philippe Noirot ◽  
Jeffery Errington ◽  
Dirk-Jan Scheffers

ABSTRACT The thick wall of gram-positive bacteria is a polymer meshwork composed predominantly of peptidoglycan (PG) and teichoic acids, both of which have a critical function in maintenance of the structural integrity and the shape of the cell. In Bacillus subtilis 168 the major teichoic acid is covalently coupled to PG and is known as wall teichoic acid (WTA). Recently, PG insertion/degradation over the lateral wall has been shown to occur in a helical pattern. However, the spatial organization of WTA assembly and its relationship with cell shape and PG assembly are largely unknown. We have characterized the localization of green fluorescent protein fusions to proteins involved in several steps of WTA synthesis in B. subtilis: TagB, -F, -G, -H, and -O. All of these localized similarly to the inner side of the cytoplasmic membrane, in a pattern strikingly similar to that displayed by probes of nascent PG. Helix-like localization patterns are often attributable to the morphogenic cytoskeletal proteins of the MreB family. However, localization of the Tag proteins did not appear to be substantially affected by single disruption of any of the three MreB homologues of B. subtilis. Bacterial and yeast two-hybrid experiments revealed a complex network of interactions involving TagA, -B, -E, -F, -G, -H, and -O and the cell shape determinants MreC and MreD (encoded by the mreBCD operon and presumably involved in the spatial organization of PG synthesis). Taken together, our results suggest that, in B. subtilis at least, the synthesis and export of WTA precursors are mediated by a large multienzyme complex that may be associated with the PG-synthesizing machinery.


Sign in / Sign up

Export Citation Format

Share Document