A cosmic-ray explanation of the galactic ridge of cosmic X-rays

Nature ◽  
1985 ◽  
Vol 318 (6043) ◽  
pp. 267-269 ◽  
Author(s):  
C. L. Bhat ◽  
T. Kifune ◽  
A. W. Wolfendale
Keyword(s):  
2021 ◽  
Vol 366 (6) ◽  
Author(s):  
Hidetoshi Sano ◽  
Yasuo Fukui

AbstractWe review recent progress in elucidating the relationship between high-energy radiation and the interstellar medium (ISM) in young supernova remnants (SNRs) with ages of ∼2000 yr, focusing in particular on RX J1713.7−3946 and RCW 86. Both SNRs emit strong nonthermal X-rays and TeV $\gamma $ γ -rays, and they contain clumpy distributions of interstellar gas that includes both atomic and molecular hydrogen. We find that shock–cloud interactions provide a viable explanation for the spatial correlation between the X-rays and ISM. In these interactions, the supernova shocks hit the typically pc-scale dense cores, generating a highly turbulent velocity field that amplifies the magnetic field up to 0.1–1 mG. This amplification leads to enhanced nonthermal synchrotron emission around the clumps, whereas the cosmic-ray electrons do not penetrate the clumps. Accordingly, the nonthermal X-rays exhibit a spatial distribution similar to that of the ISM on the pc scale, while they are anticorrelated at sub-pc scales. These results predict that hadronic $\gamma $ γ -rays can be emitted from the dense cores, resulting in a spatial correspondence between the $\gamma $ γ -rays and the ISM. The current pc-scale resolution of $\gamma $ γ -ray observations is too low to resolve this correspondence. Future $\gamma $ γ -ray observations with the Cherenkov Telescope Array will be able to resolve the sub-pc-scale $\gamma $ γ -ray distribution and provide clues to the origin of these cosmic $\gamma $ γ -rays.


2020 ◽  
Vol 640 ◽  
pp. A37 ◽  
Author(s):  
A. Ignesti ◽  
G. Brunetti ◽  
M. Gitti ◽  
S. Giacintucci

Context. A large fraction of cool-core clusters are known to host diffuse, steep-spectrum radio sources, called radio mini-halos, in their cores. Mini-halos reveal the presence of relativistic particles on scales of hundreds of kiloparsecs, beyond the scales directly influenced by the central active galactic nucleus (AGN), but the nature of the mechanism that produces such a population of radio-emitting, relativistic electrons is still debated. It is also unclear to what extent the AGN plays a role in the formation of mini-halos by providing the seeds of the relativistic population. Aims. In this work we explore the connection between thermal and non-thermal components of the intra-cluster medium in a sample of radio mini-halos and we study the implications within the framework of a hadronic model for the origin of the emitting electrons. Methods. For the first time, we studied the thermal and non-thermal connection by carrying out a point-to-point comparison of the radio and the X-ray surface brightness in a sample of radio mini-halos. We extended the method generally applied to giant radio halos by considering the effects of a grid randomly generated through a Monte Carlo chain. Then we used the radio and X-ray correlation to constrain the physical parameters of a hadronic model and we compared the model predictions with current observations. Results. Contrary to what is generally reported in the literature for giant radio halos, we find that the mini-halos in our sample have super-linear scaling between radio and X-rays, which suggests a peaked distribution of relativistic electrons and magnetic field. We explore the consequences of our findings on models of mini-halos. We use the four mini-halos in the sample that have a roundish brightness distribution to constrain model parameters in the case of a hadronic origin of the mini-halos. Specifically, we focus on a model where cosmic rays are injected by the central AGN and they generate secondaries in the intra-cluster medium, and we assume that the role of turbulent re-acceleration is negligible. This simple model allows us to constrain the AGN cosmic ray luminosity in the range ∼1044−46 erg s−1 and the central magnetic field in the range 10–40 μG. The resulting γ-ray fluxes calculated assuming these model parameters do not violate the upper limits on γ-ray diffuse emission set by the Fermi-LAT telescope. Further studies are now required to explore the consistency of these large magnetic fields with Faraday rotation studies and to study the interplay between the secondary electrons and the intra-cluster medium turbulence.


Author(s):  
Mayur B Shende ◽  
Prashali Chauhan ◽  
Prasad Subramanian

Abstract The temporal behaviour of X-rays from some AGN and microquasars is thought to arise from the rapid collapse of the hot, inner parts of their accretion discs. The collapse can occur over the radial infall timescale of the inner accretion disc. However, estimates of this timescale are hindered by a lack of knowledge of the operative viscosity in the collisionless plasma comprising the inner disc. We use published simulation results for cosmic ray diffusion through turbulent magnetic fields to arrive at a viscosity prescription appropriate to hot accretion discs. We construct simplified disc models using this viscosity prescription and estimate disc collapse timescales for 3C 120, 3C 111, and GRS 1915+105. The Shakura-Sunyaev α parameter resulting from our model ranges from 0.02 to 0.08. Our inner disc collapse timescale estimates agree well with those of the observed X-ray dips. We find that the collapse timescale is most sensitive to the outer radius of the hot accretion disc.


1973 ◽  
Vol 55 ◽  
pp. 258-275 ◽  
Author(s):  
James E. Felten

Recent theories of the origins of diffuse-background X-rays are reviewed, with emphasis on theories of the soft flux in the galactic plane and at the poles. This is probably partly galactic and partly extragalactic in origin. Failure to observe absorption by the Small Magellanic Cloud and by galactic gas in neighboring directions may be due to sources in the Cloud and to statistical fluctuations in galactic emission and absorption. Several models for numerous low-luminosity sources in the Galaxy are available. True ‘diffuse’ emission seems unnecessary. Absorption by Galactic gas seems to agree roughly with theory. The soft extragalactic component may arise in a hot intergalactic medium.The existence of a ‘diffuse’ galactic-plane excess in 1–100 keV is in some doubt. Low-luminosity sources may contribute to this as well.For isotropic X-rays in 1 keV – 1 MeV, superposition theories involving clusters of galaxies, Seyfert galaxies, etc. over a cosmological path length are now roughly viable. Simple ‘metagalactic’ Compton theories seem excluded if the break at 40 keV is sharp, but this is now in doubt. A very hot intergalactic medium at T ≈ 3 × 108 K would give the possibility of a sharp break.A recent upper limit on the line source strength of 100-MeV photons in the galactic plane may create some difficulties for cosmic-ray theory. The spectral shape of π-γ photons has become a matter of theoretical dispute.


1974 ◽  
Vol 57 ◽  
pp. 421-422 ◽  
Author(s):  
Kenneth J. Frost

An instrument aboard the Fifth Orbiting Solar Observatory has observed hard solar X-rays from January 1969 to May 1972. A large number of X-ray bursts generated by solar cosmic ray flares have been observed. The X-ray bursts consist, in general, of two non-thermal components. The earliest occurring non-thermal component, coincident with the explosive phase, consists of a group of one to about ten X-ray bursts that are, for each burst, approximately 10 s duration and symmetrical in rise and decay. The time structure and multiplicity of these bursts is remarkably similar to that found in type III radio bursts in the meterwave band. The spectra of these bursts steepens sharply at energies greater than 100 keV indicating a limit at this energy for electron acceleration during the explosive or flash phase of the flare. For several flares these multiple X-ray bursts have occurred in coincidence with a group of type III bursts.


2013 ◽  
Vol 53 (A) ◽  
pp. 612-616
Author(s):  
Manami Sasaki

Supernova remnants, owing to their strong shock waves, are likely sources of Galactic cosmic rays. Studies of supernova remnants in X-rays and gamma rays provide us with new insights into the acceleration of particles to high energies. This paper reviews the basic physics of supernova remnant shocks and associated particle acceleration and radiation processes. In addition, the study of supernova remnant populations in nearby galaxies and the implications for Galactic cosmic ray distribution are discussed.


Nature ◽  
1977 ◽  
Vol 268 (5619) ◽  
pp. 401-402 ◽  
Author(s):  
J. J. Quenby
Keyword(s):  
X Rays ◽  

1970 ◽  
Vol 37 ◽  
pp. 392-401
Author(s):  
Joseph Silk

The diffuse X-ray background between 1 keV and 1 MeV is interpreted as non-thermal bremsstrahlung in the intergalactic medium. The observed break in the X-ray spectrum at ∼40 keV yields the heat input to the intergalactic medium, the break being produced by ionization losses of sub-cosmic rays. Proton bremsstrahlung is found not to yield as satisfactory an agreement with observations as electron bremsstrahlung: excessive heating tends to occur. Two alternative models of cosmic ray injection are discussed, one involving continuous injection by evolving sources out to a redshift of about 3, and the other model involving injection by a burst of cosmic rays at a redshift of order 10. The energy density of intergalactic electrons required to produce the observed X-rays is ∼ 10−4 eV/cm3. Assuming a high density (∼ 10−5 cm−3) intergalactic medium, the energy requirement for cosmic ray injection by normal galaxies is ∼ 1058–59ergs/galaxy in sub-cosmic rays. The temperature evolution of the intergalactic medium is discussed, and we find that a similar energy input is also required to explain the observed high degree of ionization (if 3C9 is at a cosmological distance).


2015 ◽  
Vol 84 (3) ◽  
pp. 034301 ◽  
Author(s):  
Yoshihiro Shimbara ◽  
Teiichiro Matsuzaki ◽  
Kosuke Abe ◽  
Yoshitaka Fujita ◽  
Jun Goto ◽  
...  
Keyword(s):  

1998 ◽  
Vol 188 ◽  
pp. 117-120
Author(s):  
R. Petre ◽  
J. Keohane ◽  
U. Hwang ◽  
G. Allen ◽  
E. Gotthelf

The suggestion that the shocks of supernova remnants (SNR's) are cosmic ray acceleration sites dates back more than 40 years. While observations of nonthermal radio emission from SNR shells indicate the ubiquity of GeV cosmic ray production, there is still theoretical debate about whether SNR shocks accelerate particles up to the well-known “knee” in the primary cosmic ray spectrum at ~3,000 TeV. Recent X-ray observations of SN1006 and other SNR's may have provided the missing observational link between SNR shocks and high energy cosmic ray acceleration. We discuss these observations and their interpretation, and summarize our ongoing efforts to find evidence from X-ray observations of cosmic ray acceleration in the shells of other SNR's.


Sign in / Sign up

Export Citation Format

Share Document