scholarly journals In vivo targeted therapy of gastric tumors via the mechanical rotation of a flower-like Fe3O4@Au nanoprobe under an alternating magnetic field

2017 ◽  
Vol 9 (7) ◽  
pp. e408-e408 ◽  
Author(s):  
Ting Yin ◽  
Haigang Wu ◽  
Qian Zhang ◽  
Guo Gao ◽  
Joseph G Shapter ◽  
...  
2012 ◽  
Vol 23 (3) ◽  
pp. S51-S52
Author(s):  
E. Liapi ◽  
S. Mirpour ◽  
M. Wabler ◽  
H. Zhou ◽  
Y. Zhang ◽  
...  

2020 ◽  
Vol 36 (2) ◽  
pp. 47-58
Author(s):  
TOMIO MORINO ◽  
SHOTA TANOUE ◽  
SHUICHIRO MIYATA ◽  
KOTARO HIRAYAMA ◽  
AKIRA ITO ◽  
...  

2005 ◽  
Vol 284-286 ◽  
pp. 827-830
Author(s):  
D.H. Kim ◽  
Se Ho Lee ◽  
Kyoung Nam Kim ◽  
Kwang Mahn Kim ◽  
I.B. Shim ◽  
...  

Ceramic ferrites can be used to cancer-treatment. Heating of certain organs or tissue up to temperature between 42oC and 45oC preferentially for cancer therapy is called hyperthermia. We synthesized ferrites with various compositions in the system Co1-xNixFe2O4 as hyperthermic thermoseed in cancer-treatment and evaluated their effects on the necrosis of cancer cells under alternating magnetic field in vivo as well as in vitro. When a CoFe2O4 was placed into 0.2 ml distilled water, the greatest temperature change in this study, Δ T=29.3oC, was observed. More than half of the carcinoma cells were dead after exposure to alternating magnetic field using CoFe2O4, while normal cells were survived more than 60%. The injection of this ferrite particles into the tumor bearing mice was able to suppress the number and volume of tumors. CoFe2O4 is expected the useful hyperthermic thermoseed in cancer-treatment because it exhibited the greatest necrosis of carcinoma cells in vitro and in vivo.


2018 ◽  
Vol 38 (8) ◽  
pp. 4549-4555 ◽  
Author(s):  
DONATA GELLRICH ◽  
URSULA SCHMIDTMAYER ◽  
JONAS ECKRICH ◽  
JAN HAGEMANN ◽  
SVEN BECKER ◽  
...  

2021 ◽  
Author(s):  
Magdalena Radović ◽  
Marija Mirković ◽  
Aleksandar S. Nikolić ◽  
Milorad Kuraica ◽  
Predrag Iskrenović ◽  
...  

Abstract Different phosphates and phosphonates have shown excellent coating ability toward magnetic nanoparticles, improving their stability and biocompatibility which enables their biomedical application. The magnetic hyperthermia efficiency of phosphates (IDP and IHP) and phosphonates (MDP and HEDP) coated Fe3O4 magnetic nanoparticles (MNPs) were evaluated in an alternating magnetic field. For a deeper understanding of hyperthermia, the behavior of investigated MNPs in the non-alternating magnetic field was monitored by measuring the transparency of the sample. To investigate their theranostic potential coated Fe3O4-MNPs were radiolabeled with radionuclide 177Lu. Phosphate coated MNPs were radiolabeled in high radiolabeling yield (> 99%) while phosphonate coated MNPs reached maximum radiolabeling yield of 78%. Regardless lower radiolabeling yield both radiolabeled phosphonate MNPs may be further purified reaching radiochemical purity of more than 95%. In vitro stabile radiolabeled nanoparticles in saline and HSA were obtained. The high heating ability of phosphates and phosphonates coated MNPs as sine qua non for efficient in vivo hyperthermia treatment and satisfactory radiolabeling yield justifies their further research in order to develop new theranostic agents.


Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 216 ◽  
Author(s):  
Olga S. Kolovskaya ◽  
Tatiana N. Zamay ◽  
Galina S. Zamay ◽  
Vasily A. Babkin ◽  
Elena N. Medvedeva ◽  
...  

Nanotechnologies involving physical methods of tumor destruction using functional oligonucleotides are promising for targeted cancer therapy. Our study presents magnetodynamic therapy for selective elimination of tumor cells in vivo using DNA aptamer-functionalized magnetic nanoparticles exposed to a low frequency alternating magnetic field. We developed an enhanced targeting approach of cancer cells with aptamers and arabinogalactan. Aptamers to fibronectin (AS-14) and heat shock cognate 71 kDa protein (AS-42) facilitated the delivery of the nanoparticles to Ehrlich carcinoma cells, and arabinogalactan (AG) promoted internalization through asialoglycoprotein receptors. Specific delivery of the aptamer-modified FeAG nanoparticles to the tumor site was confirmed by magnetic resonance imaging (MRI). After the following treatment with a low frequency alternating magnetic field, AS-FeAG caused cancer cell death in vitro and tumor reduction in vivo. Histological analyses showed mechanical disruption of tumor tissues, total necrosis, cell lysis, and disruption of the extracellular matrix. The enhanced targeted magnetic theranostics with the aptamer conjugated superparamagnetic ferroarabinogalactans opens up a new venue for making biocompatible contrasting agents for MRI imaging and performing non-invasive anti-cancer therapies with a deep penetrated magnetic field.


Theranostics ◽  
2017 ◽  
Vol 7 (13) ◽  
pp. 3326-3337 ◽  
Author(s):  
Irina V. Belyanina ◽  
Tatiana N. Zamay ◽  
Galina S. Zamay ◽  
Sergey S. Zamay ◽  
Olga S. Kolovskaya ◽  
...  

2018 ◽  
Vol 73 (7-8) ◽  
pp. 265-271 ◽  
Author(s):  
Natália Babincová ◽  
Paul Sourivong ◽  
Peter Babinec ◽  
Christian Bergemann ◽  
Melánia Babincová ◽  
...  

Abstract There is substantial evidence regarding enhanced antitumor cytotoxicity of selected chemotherapeutic agents by appropriate heat exposure (40–44°C). Based upon these results, the integration of hyperthermia as an additional treatment modality given simultaneously with systemic chemotherapy is currently of considerable interest. Hyperthermia can be induced by alternating magnetic field and magnetic nanoparticles. Thus, we have used thermosensitive magnetoliposomes that contained superparamagnetic iron oxide nanoparticles and doxorubicin for in vitro and in vivo therapy of rat glioma C6. The results showed that magnetoliposomes can be specifically heated to 43°C (phase transition temperature of a used lipid composition) in a few minutes, and during this, the encapsulated doxorubicin is released in a controllable manner. The in vitro experiments showed that the cell viability decreased to 79.2% after heat treatment alone and to 47.4% for doxorubicin-loaded magnetoliposomes without application of alternating magnetic field, while the combined treatment resulted in 17.3% cell viability. Also, in vivo results demonstrated that magnetic drug targeting has a strong antiglioma effect with a tumor volume growth inhibition and complete regression. Such targeted delivery and controlled release of anticancer agents would provide clinical advantages compared with currently available methods.


Author(s):  
D.J. Meyerhoff

Magnetic Resonance Imaging (MRI) observes tissue water in the presence of a magnetic field gradient to study morphological changes such as tissue volume loss and signal hyperintensities in human disease. These changes are mostly non-specific and do not appear to be correlated with the range of severity of a certain disease. In contrast, Magnetic Resonance Spectroscopy (MRS), which measures many different chemicals and tissue metabolites in the millimolar concentration range in the absence of a magnetic field gradient, has been shown to reveal characteristic metabolite patterns which are often correlated with the severity of a disease. In-vivo MRS studies are performed on widely available MRI scanners without any “sample preparation” or invasive procedures and are therefore widely used in clinical research. Hydrogen (H) MRS and MR Spectroscopic Imaging (MRSI, conceptionally a combination of MRI and MRS) measure N-acetylaspartate (a putative marker of neurons), creatine-containing metabolites (involved in energy processes in the cell), choline-containing metabolites (involved in membrane metabolism and, possibly, inflammatory processes),


Sign in / Sign up

Export Citation Format

Share Document