scholarly journals ABT-263 induces G1/G0-phase arrest, apoptosis and autophagy in human esophageal cancer cells in vitro

2017 ◽  
Vol 38 (12) ◽  
pp. 1632-1641 ◽  
Author(s):  
Qing-huan Lin ◽  
Fu-chang Que ◽  
Chun-ping Gu ◽  
De-sheng Zhong ◽  
Dan Zhou ◽  
...  
2014 ◽  
Vol 115 (9) ◽  
pp. 1624-1635 ◽  
Author(s):  
Desheng Zhong ◽  
Chunping Gu ◽  
Lili Shi ◽  
Tianrong Xun ◽  
Xiaojuan Li ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Cailing Jiang ◽  
Shumin Li ◽  
Yanjing Li ◽  
Yuxian Bai

Despite recent advances in chemotherapy and surgical resection, the 5-year survival rate of esophageal cancer still remains at the low level. Therefore, it is very important to discover a new agent to improve the life expectancy of patients with esophageal cancer. Dihydroartemisinin (DHA), a semisynthetic derivative of artemisinin, has recently exhibited promising anticancer activity against various cancer cells. But so far, the specific mechanism remains unclear. We have previously demonstrated that DHA reduced viability of esophageal cancer cells in a dose-dependent manner in vitro and induced cell cycle arrest and apoptosis. Here, we extended our study to further observe the efficacy of DHA on esophageal cancer cells in vivo. In the present study, for the first time, we found that DHA significantly inhibits cell proliferation in xenografted tumor compared with the control. The mechanism was that DHA induced cell apoptosis in both human esophageal cancer cell lines Eca109 and Ec9706 in vivo in a dose-dependent manner. The results suggested that DHA was a promising agent against esophageal cancer in the clinical treatment.


1997 ◽  
Vol 32 (8) ◽  
pp. 824-828 ◽  
Author(s):  
R. Shin ◽  
Y. Naomoto ◽  
Y. Kamikawa ◽  
N. Tanaka ◽  
K. Orita

2019 ◽  
Vol 8 (2) ◽  
pp. 187 ◽  
Author(s):  
Wun-Ke Chen ◽  
Chien-An Chen ◽  
Chih-Wen Chi ◽  
Li-Hui Li ◽  
Chin-Ping Lin ◽  
...  

Esophageal cancer prognosis remains poor in current clinical practice. We previously reported that moscatilin can induce apoptosis and mitotic catastrophe in esophageal cancer cells, accompanied by upregulation of polo-like kinase 1 (Plk1) expression. We aimed to validate in vitro activity and Plk1 expression in vivo following moscatilin treatment and to examine the treatment’s radiosensitizing effect. Human esophageal cancer cells were implanted in nude mice. Moscatilin was intraperitoneally (i.p.) injected into the mice. Tumor size, body weight, white blood cell counts, and liver and renal function were measured. Aberrant mitosis and Plk1 expression were assessed. Colony formation was used to measure survival fraction after radiation. Moscatilin significantly suppressed tumor growth in mice bearing human esophageal xenografts without affecting body weight, white blood cell counts, or liver and renal function. Moscatilin also induced aberrant mitosis and apoptosis. Plk1 expression was markedly upregulated in vivo. Moreover, moscatilin pretreatment enhanced CE81T/VGH and BE3 cell radioresponse in vitro. Moscatilin may inhibit growth of human esophageal tumors and sensitize esophageal cancer cells to radiation therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoichi Katsube ◽  
Kazuhiro Noma ◽  
Toshiaki Ohara ◽  
Noriyuki Nishiwaki ◽  
Teruki Kobayashi ◽  
...  

AbstractCancer-associated fibroblasts (CAFs) have an important role in the tumor microenvironment. CAFs have the multifunctionality which strongly support cancer progression and the acquisition of therapeutic resistance by cancer cells. Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer treatment that uses a highly selective monoclonal antibody (mAb)-photosensitizer conjugate. We developed fibroblast activation protein (FAP)-targeted NIR-PIT, in which IR700 was conjugated to a FAP-specific antibody to target CAFs (CAFs-targeted NIR-PIT: CAFs-PIT). Thus, we hypothesized that the control of CAFs could overcome the resistance to conventional chemotherapy in esophageal cancer (EC). In this study, we evaluated whether EC cell acquisition of stronger malignant characteristics and refractoriness to chemoradiotherapy are mediated by CAFs. Next, we assessed whether the resistance could be rescued by eliminating CAF stimulation by CAFs-PIT in vitro and in vivo. Cancer cells acquired chemoradiotherapy resistance via CAF stimulation in vitro and 5-fluorouracil (FU) resistance in CAF-coinoculated tumor models in vivo. CAF stimulation promoted the migration/invasion of cancer cells and a stem-like phenotype in vitro, which were rescued by elimination of CAF stimulation. CAFs-PIT had a highly selective effect on CAFs in vitro. Finally, CAF elimination by CAFs-PIT in vivo demonstrated that the combination of 5-FU and NIR-PIT succeeded in producing 70.9% tumor reduction, while 5-FU alone achieved only 13.3% reduction, suggesting the recovery of 5-FU sensitivity in CAF-rich tumors. In conclusion, CAFs-PIT could overcome therapeutic resistance via CAF elimination. The combined use of novel targeted CAFs-PIT with conventional anticancer treatments can be expected to provide a more effective and sensible treatment strategy.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1065
Author(s):  
Joseph-Hang Leung ◽  
Hong-Thai Nguyen ◽  
Shih-Wei Feng ◽  
Sofya B. Artemkina ◽  
Vladimir E. Fedorov ◽  
...  

P-type and N-type photoelectrochemical (PEC) biosensors were established in the laboratory to discuss the correlation between characteristic substances and photoactive material properties through the photogenerated charge carrier transport mechanism. Four types of human esophageal cancer cells (ECCs) were analyzed without requiring additional bias voltage. Photoelectrical characteristics were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–vis reflectance spectroscopy, and photocurrent response analyses. Results showed that smaller photocurrent was measured in cases with advanced cancer stages. Glutathione (L-glutathione reduced, GSH) and Glutathione disulfide (GSSG) in cancer cells carry out redox reactions during carrier separation, which changes the photocurrent. The sensor can identify ECC stages with a certain level of photoelectrochemical response. The detection error can be optimized by adjusting the number of cells, and the detection time of about 5 min allowed repeated measurement.


Sign in / Sign up

Export Citation Format

Share Document