scholarly journals Population structure and gene flow in Stomion: a species swarm of flightless beetles of the Galápagos Islands

Heredity ◽  
1995 ◽  
Vol 75 (4) ◽  
pp. 390-397 ◽  
Author(s):  
Terrie L Finston ◽  
Stewart B Peck
1992 ◽  
Vol 49 (1) ◽  
pp. 78-84 ◽  
Author(s):  
Hal Whitehead ◽  
Susan Waters ◽  
Thomas Lyrholm

The structure of the population of female and immature sperm whales (Physeter macrocephalus) in the region of the Galápagos Islands was studied using individual photographic identifications of 1285 animals collected between 1985 and 1989. Population parameters were estimated using a maximum-likelihood mark–recapture estimate permitting emigration from the study area in which identifications are collected and then reimmigration back into it. Because permanent associations among whales violated assumptions of independence, confidence intervals for the estimates were constructed using Monte-Carlo population simulation. The analysis suggested that there is a population of very approximately 200 whales in the study area around the islands at any time. These were part of a larger population numbering between 2600 and 5300 individuals (95% confidence interval). An average of 39–94% (95% confidence interval) of the whales left the study area in any month, with a similar number immigrating.


2012 ◽  
Vol 21 (9) ◽  
pp. 2106-2115 ◽  
Author(s):  
TOBY H. GALLIGAN ◽  
STEPHEN C. DONNELLAN ◽  
FRANK J. SULLOWAY ◽  
ALISON J. FITCH ◽  
TERRY BERTOZZI ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Yveline Pailles ◽  
Shwen Ho ◽  
Inês S. Pires ◽  
Mark Tester ◽  
Sónia Negrão ◽  
...  

2020 ◽  
Author(s):  
Diego Urquia ◽  
Gabriela Pozo ◽  
Bernardo Gutierrez ◽  
Jennifer K. Rowntree ◽  
Maria de Lourdes Torres

ABSTRACTOceanic archipelagos are known to host a variety of endemic plant species. The genetic diversity and structure of these species is an important indicator of their evolutionary history and can inform appropriate conservation strategies that mitigate the risks to which they’re exposed, including invasive species and environmental disturbances. A comprehensive consideration of the role of their natural history, as well as the landscape features and the geological history of the islands themselves is required to adequately understand any emerging patterns. Such is the case for the guayabillo (Psidium galapageium), an understudied endemic plant from the Galapagos Islands with important ecological and economic roles. In this study we designed and evaluated 13 informative SSR markers and used them to investigate the genetic diversity, population structure and connectivity of the guayabillo populations from San Cristobal, Isabela and Santa Cruz islands. A total of 208 guayabillo individuals were analyzed, revealing a strong population structure between islands and two distinct genetic lineages for the Santa Cruz population. Overall, the guayabillo genetic diversity is relatively high, an unusual pattern for an insular endemic species which is possibly explained by its polyploidy and the geographical features of the islands. These include their broad altitudinal ranges and habitat heterogeneity. For populations displaying a lower genetic diversity such as San Cristobal, the history of human disturbance could be an important factor explaining these observations. Some similarities between individuals in Santa Cruz and the San Cristobal population could be explained by population differentiation or distinct natural histories of separate lineages. Our findings highlight the complex population dynamics that shape the genetic diversity of species like the guayabillo and emphasize the need to explore the currently unresolved questions about this Galapagos endemic plant.


2011 ◽  
Vol 4 (2) ◽  
pp. 102-114 ◽  
Author(s):  
Evgenyi N. Panov ◽  
Larissa Yu. Zykova

Field studies were conducted in Central Negev within the breeding range of Laudakia stellio brachydactyla and in NE Israel (Qyriat Shemona) in the range of an unnamed form (tentatively “Near-East Rock Agama”), during March – May 1996. Additional data have been collected in Jerusalem at a distance of ca. 110 km from the first and about 170 km from the second study sites. A total of 63 individuals were caught and examined. The animals were marked and their subsequent movements were followed. Social and signal behavior of both forms were described and compared. Lizards from Negev and Qyriat Shemona differ from each other sharply in external morphology, habitat preference, population structure, and behavior. The differences obviously exceed the subspecies level. At the same time, the lizards from Jerusalem tend to be intermediate morphologically between those from both above-named localities, which permits admitting the existence of a limited gene flow between lizard populations of Negev and northern Israel. The lizards from NE Israel apparently do not belong to the nominate subspecies of L. stellio and should be regarded as one more subspecies within the species.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Maysa Tiemi Motoki ◽  
Dina Madera Fonseca ◽  
Elliott Frederic Miot ◽  
Bruna Demari-Silva ◽  
Phoutmany Thammavong ◽  
...  

Abstract Background The Asian tiger mosquito, Aedes (Stegomyia) albopictus (Skuse) is an important worldwide invasive species and can be a locally important vector of chikungunya, dengue and, potentially, Zika. This species is native to Southeast Asia where populations thrive in both temperate and tropical climates. A better understanding of the population structure of Ae. albopictus in Lao PDR is very important in order to support the implementation of strategies for diseases prevention and vector control. In the present study, we investigated the genetic variability of Ae. albopictus across a north-south transect in Lao PDR. Methods We used variability in a 1337-bp fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1), to assess the population structure of Ae. albopictus in Lao PDR. For context, we also examined variability at the same genetic locus in samples of Ae. albopictus from Thailand, China, Taiwan, Japan, Singapore, Italy and the USA. Results We observed very high levels of genetic polymorphism with 46 novel haplotypes in Ae. albopictus from 9 localities in Lao PDR and Thailand populations. Significant differences were observed between the Luangnamtha population and other locations in Lao PDR. However, we found no evidence of isolation by distance. There was overall little genetic structure indicating ongoing and frequent gene flow among populations or a recent population expansion. Indeed, the neutrality test supported population expansion in Laotian Ae. albopictus and mismatch distribution analyses showed a lack of low frequency alleles, a pattern often seen in bottlenecked populations. When samples from Lao PDR were analyzed together with samples from Thailand, China, Taiwan, Japan, Singapore, Italy and the USA, phylogenetic network and Bayesian cluster analysis showed that most populations from tropical/subtropical regions are more genetically related to each other, than populations from temperate regions. Similarly, most populations from temperate regions are more genetically related to each other, than those from tropical/subtropical regions. Conclusions Aedes albopictus in Lao PDR are genetically related to populations from tropical/subtropical regions (i.e. Thailand, Singapore, and California and Texas in the USA). The extensive gene flow among locations in Lao PDR indicates that local control is undermined by repeated introductions from untreated sites.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Daniel Escobar-Camacho ◽  
Paulina Rosero ◽  
Mauricio Castrejón ◽  
Carlos F. Mena ◽  
Francisco Cuesta

AbstractThe unique marine and terrestrial ecosystems of the Galapagos Islands are highly vulnerable to human-based drivers of change, including the introduction of invasive species, unsustainable tourism, illegal fishing, overexploitation of ecosystem services, and climate change. These drivers can interact with climate-based drivers such as El Niño-Southern Oscillation (ENSO) at multiple temporal and spatial scales, exacerbating their negative impacts on already fragile ecosystems and the socioeconomic system of the Archipelago. In this review, we performed a literature review based on published literature from 1945 to 2020 and local and global climate databases to analyze drivers of change in the Galapagos. We developed and applied a spatial impact assessment model to identify high-ecological value areas with high sensitivity and exposure scores to environmental change drivers. We identified 13 priority HEVA that encompass ca. 23% (14,715 km2) of the Galapagos Archipelago, distributed in nearly 3% of the Galapagos Marine Reserve and 20% Galapagos National Park. Current and future impacts are likely to concentrate on the inhabited islands’ highlands, whereas marine impacts concentrate along most of the Galapagos Islands’ shorelines. These results are important for guiding the design and implementation of adaptation measures aimed at increasing ecosystem resilience and human adaptive capacity in the face of global environmental change. Overall, these results will be valuable in their application for preserving Galapagos biota, securing the provision of vital ecosystem services for resident human populations, and sustaining the nature-based tourism industry.


Sign in / Sign up

Export Citation Format

Share Document