scholarly journals Functional analysis of tomato calmodulin gene family during fruit development and ripening

2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Tianbao Yang ◽  
Hui Peng ◽  
Gary R Bauchan
2018 ◽  
Vol 231 ◽  
pp. 31-40 ◽  
Author(s):  
Verónica-Alhelí Ochoa-Jiménez ◽  
Guillermo Berumen-Varela ◽  
Alexel Burgara-Estrella ◽  
Jesús-Antonio Orozco-Avitia ◽  
Ángel-Javier Ojeda-Contreras ◽  
...  

2016 ◽  
Vol 35 (4) ◽  
pp. 987-999 ◽  
Author(s):  
Haifeng Jia ◽  
Chen Wang ◽  
Cheng Zhang ◽  
Muhammad Salman Haider ◽  
Pengcheng Zhao ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12414
Author(s):  
Xiang Li ◽  
Kewei Cai ◽  
Xiaona Pei ◽  
Yan Li ◽  
Yanbo Hu ◽  
...  

The NAC (NAM, ATAF and CUC) gene family plays a crucial role in the transcriptional regulation of various biological processes and has been identified and characterized in multiple plant species. However, genome-wide identification of this gene family has not been implemented in Juglans mandshurica, and specific functions of these genes in the development of fruits remain unknown. In this study, we performed genome-wide identification and functional analysis of the NAC gene family during fruit development and identified a total of 114 JmNAC genes in the J. mandshurica genome. Chromosomal location analysis revealed that JmNAC genes were unevenly distributed in 16 chromosomes; the highest numbers were found in chromosomes 2 and 4. Furthermore, according to the homologues of JmNAC genes in Arabidopsis thaliana, a phylogenetic tree was constructed, and the results demonstrated 114 JmNAC genes, which were divided into eight subgroups. Four JmNAC gene pairs were identified as the result of tandem duplicates. Tissue-specific analysis of JmNAC genes during different developmental stages revealed that 39 and 25 JmNAC genes exhibited upregulation during the mature stage in walnut exocarp and embryos, indicating that they may serve key functions in fruit development. Furthermore, 12 upregulated JmNAC genes were common in fruit ripening stage in walnut exocarp and embryos, which demonstrated that these genes were positively correlated with fruit development in J. mandshurica. This study provides new insights into the regulatory functions of JmNAC genes during fruit development in J. mandshurica, thereby improving the understanding of characteristics and evolution of the JmNAC gene family.


2019 ◽  
Vol 20 (12) ◽  
pp. 2961 ◽  
Author(s):  
Yunshu Wang ◽  
Jianling Zhang ◽  
Zongli Hu ◽  
Xuhu Guo ◽  
Shibing Tian ◽  
...  

MADS-box family genes encode transcription factors that are involved in multiple developmental processes in plants, especially in floral organ specification, fruit development, and ripening. However, a comprehensive analysis of tomato MADS-box family genes, which is an important model plant to study flower fruit development and ripening, remains obscure. To gain insight into the MADS-box genes in tomato, 131 tomato MADS-box genes were identified. These genes could be divided into five groups (Mα, Mβ, Mγ, Mδ, and MIKC) and were found to be located on all 12 chromosomes. We further analyzed the phylogenetic relationships among Arabidopsis and tomato, as well as the protein motif structure and exon–intron organization, to better understand the tomato MADS-box gene family. Additionally, owing to the role of MADS-box genes in floral organ identification and fruit development, the constitutive expression patterns of MADS-box genes at different stages in tomato development were identified. We analyzed 15 tomato MADS-box genes involved in floral organ identification and five tomato MADS-box genes related to fruit development by qRT-PCR. Collectively, our study provides a comprehensive and systematic analysis of the tomato MADS-box genes and would be valuable for the further functional characterization of some important members of the MADS-box gene family.


2012 ◽  
Vol 12 (1) ◽  
pp. 19 ◽  
Author(s):  
Tianbao Yang ◽  
Hui Peng ◽  
Bruce D Whitaker ◽  
William S Conway

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shujuan Tian ◽  
Jiao Jiang ◽  
Guo-qi Xu ◽  
Tan Wang ◽  
Qiyan Liu ◽  
...  

Abstract Background Kinesin (KIN) as a motor protein is a versatile nano-machine and involved in diverse essential processes in plant growth and development. However, the kinesin gene family has not been identified in watermelon, a valued and nutritious fruit, and yet their functions have not been characterized. Especially, their involvement in early fruit development, which directly determines the size, shape, yield and quality of the watermelon fruit, remains unclear. Results In this study, we performed a whole-genome investigation and comprehensive analysis of kinesin genes in C. lanatus. In total, 48 kinesins were identified and categorized into 10 kinesin subfamilies groups based on phylogenetic analysis. Their uneven distribution on 11 chromosomes was revealed by distribution analysis. Conserved motif analysis showed that the ATP-binding motif of kinesins was conserved within all subfamilies, but not the microtubule-binding motif. 10 segmental duplication pairs genes were detected by the syntenic and phylogenetic approaches, which showed the expansion of the kinesin gene family in C. lanatus genome during evolution. Moreover, 5 ClKINs genes are specifically and abundantly expressed in early fruit developmental stages according to comprehensive expression profile analysis, implying their critical regulatory roles during early fruit development. Our data also demonstrated that the majority of kinesin genes were responsive to plant hormones, revealing their potential involvement in the signaling pathways of plant hormones. Conclusions Kinesin gene family in watermelon was comprehensively analyzed in this study, which establishes a foundation for further functional investigation of C. lanatus kinesin genes and provides novel insights into their biological functions. In addition, these results also provide useful information for understanding the relationship between plant hormone and kinesin genes in C. lanatus.


Sign in / Sign up

Export Citation Format

Share Document