scholarly journals A Model of Brain Arteriolar Oxygen and Carbon Dioxide Transport during Anemia

1993 ◽  
Vol 13 (5) ◽  
pp. 872-880 ◽  
Author(s):  
Richard S. Schacterle ◽  
Robert J. Ribando ◽  
J. Milton Adams

Existing experimental and theoretical evidence suggests that precapillary diffusion of O2 and CO2 occurs between arterioles and tissue under normal physiologic conditions. However, limited information is available on arteriolar gas transport during anemia. With use of a mathematical model of an arteriolar network in brain tissue, anemic hematocrits of 35, 25, and 15% were modeled to determine the effect of anemia on the exchange, the change in the equilibrium tissue O2 and CO2 tensions, and the increase in blood flow needed to restore tissue oxygenation. We found that the blood Po2 exiting the network fell from 66 mm Hg normally to 48 mm Hg during the severest anemia. Concurrently, the equilibrium tissue O2 tensions dropped from 44 to 23 mm Hg. For CO2 the exit blood Pco2 was 58 mm Hg for a 15% hematocrit, an increase of 4 mm Hg from the normal value, and equilibrium tissue Pco2 increased from 56 to 61 mm Hg. Blood flow increases from normal values necessary to offset the effects of the decreased O2 delivery to the tissue were 26, 86, and 222%, respectively, for hematocrits of 35, 25, and 15%. We compared our model results with recent experimental studies that have suggested that the amount of O2 diffusion is much higher than predicted values. We found that these experimental O2 gradients are three to four times larger than theoretical.

Blood ◽  
1948 ◽  
Vol 3 (4) ◽  
pp. 329-348 ◽  
Author(s):  
HERRMAN L. BLUMGART ◽  
MARK D. ALTSCHULE

Abstract The cardiac and respiratory adjustments in chronic anemia and their clinical manifestations have been reviewed. When the oxygen carrying capacity of the blood is diminished, an adequate supply of oxygen to the tissues is maintained by an increased cardiac output, an increased velocity of blood flow, and a relatively more complete abstraction of the oxygen from the blood as it passes through the capillaries. With the increased blood flow, the average peripheral resistance is decreased but the state of the small blood vessels is not uniform everywhere; the blood flow in the hands and kidneys, for instance, may be reduced, while that of other parts of the body is increased. The total oxygen consumption of the body in anemia is not strikingly altered. The blood volume generally is slightly reduced but the plasma volume is normal. The deviations from the normal values vary from patient to patient, but generally are definite when the hemoglobin values are less than 50 per cent and are greatest at the lowest levels of hemoglobin concentration. The close interrelationship between the cardiovascular and respiratory systems is exemplified by the coincident changes in the respiratory system in anemia. The rate and depth of respiration often are increased together with a lowering in the vital capacity and its subdivisions, the reserve and complemental air volumes. The resid- ual air is somewhat increased. These deviations from the normal are similar to those observed in pulmonary congestion or edema and denote a loss of elasticity and expansibility favoring the occurrence of exertional dyspnea. The arterial blood saturation is usually normal at rest but, during exertion, a significant lowering becomes apparent. The importance of hemoglobin in the transport of carbon dioxide is reviewed; the decreased availability of hemoglobin as a buffer in carbon dioxide transport in anemia is compensated by the increased ventilation of the blood in the lungs, rendering the arterial blood somewhat alkalotic. The red cells also play an important role in regard to the respiratory enzyme, carbonic anhydrase. In the anemias due to blood loss, malnutrition, chronic infection, uremia, or leukemia, the blood carbonic anhydrase activity is parallel to the decrease in hemoglobin level leading to a deficiency not only of oxygen carrying capacity but also a decreased ability to absorb carbon dioxide from the tissues and to release it in the lungs. The following factors, many of which are closely interrelated, are operative in the production of dyspnea in anemic patients: the increased respiratory minute volume, the decreased vital capacity and its subdivisions, the abnormalities in carbon dioxide transport and dissociation, the reduced arterial oxygen capacity and the decreased blood oxygen saturation during effort, and the frequently observed elevated blood lactic acid values. The symptoms and signs exhibited by anemic patients, including palpitation and breathlessness on exertion, tachycardia, cardiac dilatation and hypertrophy, are described. In addition to an apical systolic murmur, other systolic and diastolic murmurs are occasionally heard. The arterial blood pressure is frequently lowered in anemia; the venous pressure is generally within the limits of normal. Electrocardiographic abnormalities occur in approximately one-quarter of anemic patients but are minor and not specific in character. The occurrence of angina pectoris, congestive failure, and intermittent claudication in some patients with the development of anemia, and disappearance of these conditions as the anemia is alleviated, is discussed with particular reference to the underlying physiologic mechanisms.


1989 ◽  
Vol 28 (12) ◽  
pp. 2263 ◽  
Author(s):  
Diana Decker-Dunn ◽  
Douglas A. Christensen ◽  
William Mackie ◽  
Jolene Fox ◽  
G. Michael Vincent

2009 ◽  
Vol 21 (3) ◽  
pp. 033101 ◽  
Author(s):  
Jennifer R. Zierenberg ◽  
Hideki Fujioka ◽  
Ronald B. Hirschl ◽  
Robert H. Bartlett ◽  
James B. Grotberg

Author(s):  
Oleksii Timkov ◽  
Dmytro Yashchenko ◽  
Volodymyr Bosenko

The article deals with the development of a physical model of a car equipped with measuring, recording and remote control equipment for experimental study of car properties. A detailed description of the design of the physical model and of the electronic modules used is given, links to application libraries and the code of the first part of the program for remote control of the model are given. Atmega microcontroller on the Arduino Uno platform was used to manage the model and register the parameters. When moving the car on the memory card saved such parameters as speed, voltage on the motor, current on the motor, the angle of the steered wheel, acceleration along three coordinate axes are recorded. Use of more powerful microcontrollers will allow to expand the list of the registered parameters of movement of the car. It is possible to measure the forces acting on the elements of the car and other parameters. In the future, it is planned to develop a mathematical model of motion of the car and check its adequacy in conducting experimental studies on maneuverability on the physical model. In addition, it is possible to conduct studies of stability and consumption of electrical energy. The physical model allows to quickly change geometric dimensions and mass parameters. In the study of highway trains, this approach will allow to investigate the various layout schemes of highway trains in the short term. It is possible to make two-axle road trains and saddle towed trains, three-way hitched trains of different layout. The results obtained will allow us to improve not only the mathematical model, but also the experimental physical model, and move on to further study the properties of hybrid road trains with an active trailer link. This approach allows to reduce material and time costs when researching the properties of cars and road trains. Keywords: car, physical model, experiment, road trains, sensor, remote control, maneuverability, stability.


1992 ◽  
Vol 57 (10) ◽  
pp. 2125-2134 ◽  
Author(s):  
Petr Stehlík ◽  
František Babinec

An application of a fuzzy expert system intended for estimating some parameters of steam reforming can also be one of the examples of an ever increasing utilization of expert systems in practice. The present contribution deals with the method making use of a verified mathematical model for simulating thermal chemical processes in reforming furnace radiation chamber in order to create knowledge base. This base includes linguistic values of selected independent and dependent variable quantities. Examples given illustrate an evaluation of dependent variable quantities (methane conversion into carbon dioxide and monoxide, reaction tube service life) by means of the said expert system based on queries.


Sign in / Sign up

Export Citation Format

Share Document