Experimental Studies of the Effect of Carbon Dioxide on Cerebral Blood Flow during Carotid Insufficiency

1968 ◽  
Vol 21 (sup102) ◽  
pp. XVI-H-XVI-H
Author(s):  
G. Kindt ◽  
J. Youmans
2015 ◽  
Vol 129 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Nia C.S. Lewis ◽  
Kurt J. Smith ◽  
Anthony R. Bain ◽  
Kevin W. Wildfong ◽  
Tianne Numan ◽  
...  

Diameter reductions in the internal carotid artery (ICA) and vertebral artery (VA) contribute to the decline in brain blood with hypotension. The decline in vertebral blood flow with hypotension was greater when carbon dioxide was low; this was not apparent in the ICA.


1980 ◽  
Vol 48 (3) ◽  
pp. 468-472 ◽  
Author(s):  
F. A. Leahy ◽  
D. Cates ◽  
M. MacCallum ◽  
H. Rigatto

To determine 1) the effect of arterial CO2 change on the neonatal cerebral circulation and 2) whether 100% O2 would produce significant decrease in cerebral blood flow (CBF), we studied 24 preterm infants to explain the late (5 min) hyperventilation observed in them during hyperoxia. Of these, 12 were studied before and during inhalation of 2-3% CO2 and 12 before and during the inhalation of 100% O2. We measured CBF by a modification of the venous occlusion plethysmography technique and found that CBF increased 7.8% per Torr alveolar carbon dioxide pressure change and that it decreased 15% with 100% O2. These findings suggest that 1) CO2 is an important regulator of CBF in the perterm infant, 2) CBF-CO2 sensitivity in these infants may be greater than in adult subjects, 3) 100% O2 reduced CBF significantly, and 4) a decrease in CBF during administration of 100% O2 may be at least partially responsible for the increase in ventilation with hyperoxia.


Cryobiology ◽  
1978 ◽  
Vol 15 (6) ◽  
pp. 715 ◽  
Author(s):  
Y. Kawashima ◽  
H. Yoshikawa ◽  
I. Kosugi ◽  
K. Okada ◽  
T. Kitagaki ◽  
...  

2020 ◽  
Vol 9 (12) ◽  
pp. 4088
Author(s):  
Shyan-Lung Lin ◽  
Shoou-Jeng Yeh ◽  
Ching-Kun Chen ◽  
Yu-Liang Hsu ◽  
Chih-En Kuo ◽  
...  

Postural orthostatic tachycardia syndrome (POTS) typically occurs in youths, and early accurate POTS diagnosis is challenging. A recent hypothesis suggests that upright cognitive impairment in POTS occurs because reduced cerebral blood flow velocity (CBFV) and cerebrovascular response to carbon dioxide (CO2) are nonlinear during transient changes in end-tidal CO2 (PETCO2). This novel study aimed to reveal the interaction between cerebral autoregulation and ventilatory control in POTS patients by using tilt table and hyperventilation to alter the CO2 tension between 10 and 30 mmHg. The cerebral blood flow velocity (CBFV), partial pressure of end-tidal carbon dioxide (PETCO2), and other cardiopulmonary signals were recorded for POTS patients and two healthy groups including those aged >45 years (Healthy-Elder) and aged <45 years (Healthy-Youth) throughout the experiment. Two nonlinear regression functions, Models I and II, were applied to evaluate their CBFV-PETCO2 relationship and cerebral vasomotor reactivity (CVMR). Among the estimated parameters, the curve-fitting Model I for CBFV and CVMR responses to CO2 for POTS patients demonstrated an observable dissimilarity in CBFVmax (p = 0.011), mid-PETCO2 (p = 0.013), and PETCO2 range (p = 0.023) compared with those of Healthy-Youth and in CBFVmax (p = 0.015) and CVMRmax compared with those of Healthy-Elder. With curve-fitting Model II for POTS patients, the fit parameters of curvilinear (p = 0.036) and PETCO2 level (p = 0.033) displayed significant difference in comparison with Healthy-Youth parameters; range of change (p = 0.042), PETCO2 level, and CBFVmax also displayed a significant difference in comparison with Healthy-Elder parameters. The results of this study contribute toward developing an early accurate diagnosis of impaired CBFV responses to CO2 for POTS patients.


1977 ◽  
Vol 232 (6) ◽  
pp. H596-H601 ◽  
Author(s):  
B. Grubb ◽  
C. D. Mills ◽  
J. M. Colacino ◽  
K. Schmidt-Nielsen

The purpose of this study was to determine the effect of arterial PCO2 on blood flow to the avian brain. Cerebral blood flow was measured on curarized, artificially ventilated Pekin ducks by the rate at which intra-arterially injected xenon-133 was cleared from the duck's brain. A two-component clearance curve resulted: the blood flow calculated from the fast and slow components was similar to the blood flow to mammalian grey and white matter, respectively. Hypercapnia markedly increased the fast component of blood flow, whereas hypocapnia had no effect on this component. These effects were not due to changes in blood pressure, which was independent of arterial PCO2. Blood flow calculated from the slow component was independent of arterial PCO2. We conclude that the lack of response to hypocapnia may contribute to the exceptional tolerance of birds to high altitude by maintaining normal cerebral blood flow.


Sign in / Sign up

Export Citation Format

Share Document