scholarly journals AT1a receptor knockout in mice impairs urine concentration by reducing basal vasopressin levels and its receptor signaling proteins in the inner medulla

2009 ◽  
Vol 76 (2) ◽  
pp. 169-177 ◽  
Author(s):  
Xiao C. Li ◽  
Yuan Shao ◽  
Jia L. Zhuo
2012 ◽  
Vol 303 (5) ◽  
pp. F746-F756 ◽  
Author(s):  
Xiao C. Li ◽  
Yuan Shao ◽  
Jia L. Zhuo

It is well recognized that ANG II interacts with arginine vasopressin (AVP) to regulate water reabsorption and urine concentration in the kidney. The present study used ANG II type 1a (AT1a) receptor-deficient (Agtr1a−/−) mice to test the hypothesis that AT1a receptor signaling is required for basal and water deprivation-induced urine concentration in the renal medulla. Eight groups of wild-type (WT) and Agtr1a−/− mice were treated with or without 24-h water deprivation and 1-desamino-8-d-AVP (DDAVP; 100 ng/h ip) for 2 wk or with losartan (10 mg/kg ip) during water deprivation. Under basal conditions, Agtr1a−/− mice had lower systolic blood pressure ( P < 0.01), greater than threefold higher 24-h urine excretion (WT mice: 1.3 ± 0.1 ml vs. Agtr1a−/− mice: 5.9 ± 0.7 ml, P < 0.01), and markedly decreased urine osmolality (WT mice: 1,834 ± 86 mosM/kg vs. Agtr1a−/− mice: 843 ± 170 mosM/kg, P < 0.01), without significant changes in 24-h urinary Na+ excretion. These responses in Agtr1a−/− mice were associated with lower basal plasma AVP (WT mice: 105 ± 8 pg/ml vs. Agtr1a−/− mice: 67 ± 6 pg/ml, P < 0.01) and decreases in total lysate and membrane aquaporin-2 (AQP2; 48.6 ± 7% of WT mice, P < 0.001) and adenylyl cyclase isoform III (55.6 ± 8% of WT mice, P < 0.01) proteins. Although 24-h water deprivation increased plasma AVP to the same levels in both strains, 24-h urine excretion was still higher, whereas urine osmolality remained lower, in Agtr1a−/− mice ( P < 0.01). Water deprivation increased total lysate AQP2 proteins in the inner medulla but had no effect on adenylyl cyclase III, phosphorylated MAPK ERK1/2, and membrane AQP2 proteins in Agtr1a−/− mice. Furthermore, infusion of DDAVP for 2 wk was unable to correct the urine-concentrating defects in Agtr1a−/− mice. These results demonstrate that AT1a receptor-mediated ANG II signaling is required to maintain tonic AVP release and regulate V2 receptor-mediated responses to water deprivation in the inner medulla.


Physiology ◽  
2008 ◽  
Vol 23 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Liza Barki-Harrington ◽  
Howard A. Rockman

Initially thought to play a role only in G-protein-coupled receptor desensitization, β-arrestins are ascribed with new roles such as scaffolding and signaling proteins by their own right. This review explores the many functions of β-arrestins, with an emphasis on their recently identified role as regulators of receptor signaling.


2019 ◽  
Author(s):  
Keini Dressano ◽  
Philipp R Weckwerth ◽  
Elly Poretsky ◽  
Yohei Takahashi ◽  
Carleen Villarreal ◽  
...  

AbstractSurvival of all living organisms requires the ability to detect attack and swiftly counter with protective immune responses. Despite considerable mechanistic advances, interconnectivity of signaling circuits often remains unclear. A newly-characterized protein, IMMUNOREGULATORY RNA-BINDING PROTEIN (IRR), negatively regulates immune responses in both maize and Arabidopsis, with disrupted function resulting in enhanced disease resistance. IRR physically interacts with, and promotes canonical splicing of, transcripts encoding defense signaling proteins, including the key negative regulator of pattern recognition receptor signaling complexes, CALCIUM-DEPENDENT PROTEIN KINASE 28 (CPK28). Upon immune activation by Plant Elicitor Peptides (Peps), IRR is dephosphorylated, disrupting interaction withCPK28transcripts and resulting in accumulation of an alternative splice variant encoding a truncated CPK28 protein with impaired kinase activity and diminished function as a negative regulator. We demonstrate a novel circuit linking Pep-induced post-translational modification of IRR with post-transcriptionally-mediated attenuation of CPK28 function to dynamically amplify Pep signaling and immune output.One Sentence SummaryPlant innate immunity is promoted by post-translational modification of a novel RNA-binding protein that regulates alternative splicing of transcripts encoding defense signaling proteins to dynamically increase immune receptor signaling capacity through deactivation of a key signal-buffering circuit.


2002 ◽  
Vol 294 (2) ◽  
pp. 441-447 ◽  
Author(s):  
Mamoru Fujita ◽  
Izumi Hayashi ◽  
Shohei Yamashina ◽  
Moritoshi Itoman ◽  
Masataka Majima

Sign in / Sign up

Export Citation Format

Share Document