scholarly journals Effects of dexamethasone on the TGF-β1-induced epithelial-to-mesenchymal transition in human peritoneal mesothelial cells

2012 ◽  
Vol 93 (2) ◽  
pp. 194-206 ◽  
Author(s):  
Yang-Hee Jang ◽  
Hyun-Soo Shin ◽  
Hack Sun Choi ◽  
Eun-Sun Ryu ◽  
Mi Jin Kim ◽  
...  
2015 ◽  
Vol 37 (1) ◽  
pp. 43-54 ◽  
Author(s):  
Lu Zhang ◽  
Zhenghong Li ◽  
Weiming He ◽  
Lingdong Xu ◽  
Jing Wang ◽  
...  

Background/Aims: To investigate the effect of Astragaloside IV (AS-IV) on the regulation of the TGF-β1/Smad signaling pathway in peritoneal mesothelial cells with an epithelial-to-mesenchymal transition (EMT). Methods: EMT of human peritoneal mesothelial cells (HMrSV5) was induced using 2 ng/ml TGF-β1. Cells were randomly divided into a vehicle group, a vehicle group with AS-IV, a TGF-β1 treated group, and a TGF-β1 treated group receiving varied doses of AS-IV or NAC. Real-time quantitative PCR and western blot were used to detect the expression of genes and proteins associated with the TGF-β1/Smad signaling pathway and EMT. DCFH-DA was used to detect the generation of ROS in HMrSV5 cells, and a transwell migration assay was used to verify the capacity of AS-IV to inhibit EMT in HMrSV5 cells. Lentiviruses were used as carriers for the overexpression or knockdown of the Smad7 gene. Results: Expression levels of E-cadherin (epithelial marker) was decreased and vimentin, α-SMA (EMT markers) and collagen I (extracellular matrix protein) phospho-Smad2/3, Snail1 and Snail2 was increased significantly in the TGF-β1-treated HMrSV5 cells. AS-IV was associated with downregulated expression of vimentin and phospho-Smad2/3 in a dose-dependent manner, while the expression of Smad7 increased. Silenced or forced expression of Smad7 verified its role in the inhibitory effect of AS-IV on TGF-β1-induced EMT in HMrSV5 cells. Conclusion: AS-IV effectively promotes the upregulation of Smad7 in the TGF-β1/Smad signaling pathway during the EMT of HMrSV5 cells, indicating its potential therapeutic effect for the control of PF.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuki Kimura ◽  
Hideyuki Ohzawa ◽  
Hideyo Miyato ◽  
Yuki Kaneko ◽  
Akira Saito ◽  
...  

AbstractPeritoneal dissemination is a major metastatic pathway for gastrointestinal and ovarian malignancies. The miR-29b family is downregulated in peritoneal fluids in patients with peritoneal metastases (PM). We examined the effect of miR-29b on mesothelial cells (MC) which play critical a role in the development of PM through mesothelial-mesenchymal transition (MMT). Human peritoneal mesothelial cells (HPMCs) were isolated from surgically resected omental tissue and MMT induced by stimulation with 10 ng/ml TGF-β1. MiR-29b mimics and negative control miR were transfected by lipofection using RNAiMAX and the effects on the MMT evaluated in vitro. HPMC produced substantial amounts of miR-29b which was markedly inhibited by TGF-β1. TGF-β1 stimulation of HPMC induced morphological changes with decreased expression of E-cadherin and calretinin, and increased expression of vimentin and fibronectin. TGF-β1 also enhanced proliferation and migration of HPMC as well as adhesion of tumor cells in a fibronectin dependent manner. However, all events were strongly abrogated by simultaneous transfection of miR-29b. MiR-29b inhibits TGF-β1 induced MMT and replacement of miR-29b in the peritoneal cavity might be effective to prevent development of PM partly through the effects on MC.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 832
Author(s):  
Theodoros Eleftheriadis ◽  
Georgios Pissas ◽  
Georgia Antoniadi ◽  
Evdokia Nikolaou ◽  
Spyridon Golfinopoulos ◽  
...  

Along with infections, ultrafiltration failure due to the toxicity of glucose-containing peritoneal dialysis (PD) solutions is the Achilles’ heel of PD method. Triggered by the protective effect of general control nonderepressible-2 (GCN-2) kinase activation against high-glucose conditions in other cell types, we evaluated whether the same occurs in human peritoneal mesothelial cells. We activated GCN-2 kinase with halofuginone or tryptophanol, and assessed the impact of this intervention on glucose transporter-1, glucose transporter-3, and sodium-glucose cotransporter-1, glucose influx, reactive oxygen species (ROS), and the events that result in glucotoxicity. These involve the inhibition of glyceraldehyde 3-phosphate dehydrogenase and the diversion of upstream glycolytic products to the aldose pathway (assessed by D-sorbitol), the lipid synthesis pathway (assessed by protein kinase C activity), the hexosamine pathway (determined by O-linked β-N-acetyl glucosamine-modified proteins), and the advanced glycation end products generation pathway (assessed by methylglyoxal). Then, we examined the production of the profibrotic transforming growth factor-β1 (TGF-β1), the pro-inflammatory interleukin-8 (IL-8). Cell apoptosis was assessed by cleaved caspase-3, and mesothelial to mesenchymal transition (MMT) was evaluated by α-smooth muscle actin protein. High-glucose conditions increased glucose transporters, glucose influx, ROS, all the high-glucose-induced harmful pathways, TGF-β1 and IL-8, cell apoptosis, and MMT. Halofuginone and tryptophanol inhibited all of the above high glucose-induced alterations, indicating that activation of GCN-2 kinase ameliorates glucotoxicity in human peritoneal mesothelial cells, preserves their integrity, and prevents MMT. Whether such a strategy could be applied in the clinic to avoid ultrafiltration failure in PD patients remains to be investigated.


Sign in / Sign up

Export Citation Format

Share Document