scholarly journals MiR-29b may suppresses peritoneal metastases through inhibition of the mesothelial–mesenchymal transition (MMT) of human peritoneal mesothelial cells

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuki Kimura ◽  
Hideyuki Ohzawa ◽  
Hideyo Miyato ◽  
Yuki Kaneko ◽  
Akira Saito ◽  
...  

AbstractPeritoneal dissemination is a major metastatic pathway for gastrointestinal and ovarian malignancies. The miR-29b family is downregulated in peritoneal fluids in patients with peritoneal metastases (PM). We examined the effect of miR-29b on mesothelial cells (MC) which play critical a role in the development of PM through mesothelial-mesenchymal transition (MMT). Human peritoneal mesothelial cells (HPMCs) were isolated from surgically resected omental tissue and MMT induced by stimulation with 10 ng/ml TGF-β1. MiR-29b mimics and negative control miR were transfected by lipofection using RNAiMAX and the effects on the MMT evaluated in vitro. HPMC produced substantial amounts of miR-29b which was markedly inhibited by TGF-β1. TGF-β1 stimulation of HPMC induced morphological changes with decreased expression of E-cadherin and calretinin, and increased expression of vimentin and fibronectin. TGF-β1 also enhanced proliferation and migration of HPMC as well as adhesion of tumor cells in a fibronectin dependent manner. However, all events were strongly abrogated by simultaneous transfection of miR-29b. MiR-29b inhibits TGF-β1 induced MMT and replacement of miR-29b in the peritoneal cavity might be effective to prevent development of PM partly through the effects on MC.

2021 ◽  
Author(s):  
Yuki Kimura ◽  
Hideyuki Ohzawa ◽  
Hideyo Miyato ◽  
Yuki Kaneko ◽  
Kazuya Takahashi ◽  
...  

Abstract Background: Peritoneal dissemination is a major metastatic pathway for gastrointestinal and ovarian malignancies. The miR-29b family is downregulated in peritoneal fluids in patients with peritoneal metastases (PM). We examined the effect of miR-29b on mesothelial cells (MC) which play critical a role in the development of PM through mesothelial-mesenchymal transition (MMT). Methods: Human peritoneal mesothelial cells (HPMCs) were isolated from surgically resected omental tissue and MMT induced by stimulation with 10 ng/ml TGF-b1. MiR-29b mimics and negative control miR were transfected by lipofection using RNAiMAX and the effects on the MMT evaluated in vitro. Results: HPMC produced substantial amounts of miR-29b which was markedly inhibited by TGF-b1. TGF-b1 stimulation of HPMC induced morphological changes with decreased expression of E-cadherin and calretinin, and increased expression of vimentin and fibronectin. TGF-b1 also enhanced proliferation and migration of HPMC as well as adhesion of tumor cells in a fibronectin dependent manner. However, all events were strongly abrogated by simultaneous transfection of miR-29b. Conclusion: MiR-29b inhibits TGF-b1 induced MMT and replacement of miR-29b in the peritoneal cavity might be effective to prevent development of PM partly through the effects on MC.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Ke Zhang ◽  
Hao Zhang ◽  
Xun Zhou ◽  
Wen-bin Tang ◽  
Li Xiao ◽  
...  

Background. microRNA (miRNA, miR) are thought to interact with multiple mRNAs which are involved in the EMT process. But the role of miRNAs in peritoneal fibrosis has remained unknown.Objective. To determine if miRNA589 regulates the EMT induced by TGFβ1 in human peritoneal mesothelial cell line (HMrSV5 cells).Methods. 1. Level of miR589 was detected in both human peritoneal mesothelial cells (HPMCs) isolated from continuous ambulatory peritoneal dialysis (CAPD) patients’ effluent and HMrSV5 cells treated with or without TGFβ1. 2. HMrSV5 cells were divided into three groups: control group, TGFβ1 group, and pre-miR-589+TGFβ1 group. The level of miRNA589 was determined by realtime PCR. The expressions of ZO-1, vimentin, and E-cadherin in HPMCs were detected, respectively.Results. Decreased level of miRNA589 was obtained in either HPMCs of long-term CAPD patients or HMrSV5 cells treated with TGFβ1. In vitro, TGFβ1 led to upregulation of vimentin and downregulation of ZO-1 as well as E-cadherin in HMrSV5 cells, which suggested EMT, was induced. The changes were accompanied with notably decreased level of miRNA589 in HMrSV5 cells treated with TGFβ1. Overexpression of miRNA589 by transfection with pre-miRNA589 partially reversed these EMT changes.Conclusion. miRNA589 mediates TGFβ1 induced EMT in human peritoneal mesothelial cells.


1996 ◽  
Vol 16 (1_suppl) ◽  
pp. 58-60 ◽  
Author(s):  
Michael Kruse ◽  
Arezki Mahiout ◽  
Volker Kliem ◽  
Peter Kurz ◽  
Karl-Martin Koch ◽  
...  

To investigate whether the glucose uptake (GU) of human peritoneal mesothelial cells (HPMC) is mediated by glucose transporters and whether this uptake is influenced by interleukin 1–β (IL-1β), we measured 2-deoxy-(3H)-GU of HPMC in vitro, after exposing the cells for different times (two and 12 hours) to increasing concentrations (0.1, 1.0, and 2.0 ng/mL) of IL-1 β. To exclude a noncarrier-mediated transport, GU was also tested in the presence of cytochalasin B. All experiments were performed in triplicate in the cells of two donors. Cytochalasin B inhibits GU of HPMC almost completely. GU of HPMC is not stimulated by insulin. GU is stimulated by IL-1 β in a dose-dependent manner. These data indicate a GU of HPMC, which is mediated by a glucose transporter and stimulated by IL-1 β. The increased uptake of glucose from the dialysate In patients with peritonitis may be mediated by a (cytokineinduced) increased activity of HPMC glucose transporters.


1994 ◽  
Vol 17 (5) ◽  
pp. 252-260 ◽  
Author(s):  
J. Witowski ◽  
J. Knapowski

Glycerol has been proposed as a substitute osmotic agent for glucose in peritoneal dialysis fluids. We have compared the effect of glycerol and glucose on the function of human peritoneal mesothelial cells (HPMC) in vitro. The viability of HPMC was not affected by glycerol (up to 250 mM), whereas it was reduced by glucose in a time- and dose-dependent manner, as assessed by the LDH release. Although the incubation of HPMC with glycerol induced a dose-dependent decrease in HPMC proliferation, the effect was significantly less inhibitory than that produced by glucose. In HPMC treated with 90 mM of glycerol or glucose the incorporation of [3H]-thymidine had reached 79.0±19.3% and 55.3+4.0% of the control (p<0.05 and p<0.01), respectively. As measured by the [methyl-14C]-choline incorporation, the intracellular amount of newly synthesized phospholipids was reduced from (cpm/μg cellular protein) 147±58 in control HPMC to 59+15 in cells exposed to 90 mM of glucose (p<0.01), but not affected by glycerol (163±65). On the other hand, both glycerol and glucose (90 mM) decreased the synthesis of proteins (as assessed by the [3H]-proline incorporation) and interfered with potassium (86Rb) transport mechanisms in HPMC. Our data suggest that there exist some possibly advantageous aspects of glycerol as far as mesothelial cell biocompatibility profile is concerned.


2007 ◽  
Vol 42 (8) ◽  
pp. 840-843 ◽  
Author(s):  
Krzysztof Książek ◽  
Marek Winckiewicz ◽  
Ryszard Staniszewski ◽  
Andrzej Bręborowicz ◽  
Janusz Witowski

Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 832
Author(s):  
Theodoros Eleftheriadis ◽  
Georgios Pissas ◽  
Georgia Antoniadi ◽  
Evdokia Nikolaou ◽  
Spyridon Golfinopoulos ◽  
...  

Along with infections, ultrafiltration failure due to the toxicity of glucose-containing peritoneal dialysis (PD) solutions is the Achilles’ heel of PD method. Triggered by the protective effect of general control nonderepressible-2 (GCN-2) kinase activation against high-glucose conditions in other cell types, we evaluated whether the same occurs in human peritoneal mesothelial cells. We activated GCN-2 kinase with halofuginone or tryptophanol, and assessed the impact of this intervention on glucose transporter-1, glucose transporter-3, and sodium-glucose cotransporter-1, glucose influx, reactive oxygen species (ROS), and the events that result in glucotoxicity. These involve the inhibition of glyceraldehyde 3-phosphate dehydrogenase and the diversion of upstream glycolytic products to the aldose pathway (assessed by D-sorbitol), the lipid synthesis pathway (assessed by protein kinase C activity), the hexosamine pathway (determined by O-linked β-N-acetyl glucosamine-modified proteins), and the advanced glycation end products generation pathway (assessed by methylglyoxal). Then, we examined the production of the profibrotic transforming growth factor-β1 (TGF-β1), the pro-inflammatory interleukin-8 (IL-8). Cell apoptosis was assessed by cleaved caspase-3, and mesothelial to mesenchymal transition (MMT) was evaluated by α-smooth muscle actin protein. High-glucose conditions increased glucose transporters, glucose influx, ROS, all the high-glucose-induced harmful pathways, TGF-β1 and IL-8, cell apoptosis, and MMT. Halofuginone and tryptophanol inhibited all of the above high glucose-induced alterations, indicating that activation of GCN-2 kinase ameliorates glucotoxicity in human peritoneal mesothelial cells, preserves their integrity, and prevents MMT. Whether such a strategy could be applied in the clinic to avoid ultrafiltration failure in PD patients remains to be investigated.


2011 ◽  
Vol 34 (6) ◽  
pp. 489-494 ◽  
Author(s):  
Marta Ciszewicz ◽  
George Wu ◽  
Paul Tam ◽  
Alicja Połubinska ◽  
Andrzej Bręborowicz

Sign in / Sign up

Export Citation Format

Share Document