scholarly journals Long-term in vivo single-cell lineage tracing of deep structures using three-photon activation

2016 ◽  
Vol 5 (6) ◽  
pp. e16084-e16084 ◽  
Author(s):  
Isil Tekeli ◽  
Isabelle Aujard ◽  
Xavier Trepat ◽  
Ludovic Jullien ◽  
Angel Raya ◽  
...  
Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 446-446
Author(s):  
Alejo E Rodriguez-Fraticelli ◽  
Caleb S Weinreb ◽  
Allon Moshe Klein ◽  
Shou-Wen Wang ◽  
Fernando D Camargo

Blood regeneration upon transplantation relies on the activity of long-term repopulating hematopoietic stem cells (LT-HSCs). One of the major controversies in hematopoiesis relates to the apparently different properties that HSCs have in transplantation versus unperturbed settings. In unperturbed steady state hematopoiesis, the most potent HSCs appear to be mostly dormant, and only producing platelet-lineage cells. In turn, upon transplant, even a single transplanted HSC can actively divide and regenerate hundreds of millions of blood progenitors of all lineages. It would thus appear that HSCs have different fundamental properties in each study system. However, most transplantation studies have only tracked the lineage output of the transplanted HSC clones, and rarely the regeneration of the HSC compartment itself. In addition, clonal assays have not been performed at sufficient resolution to fully capture the diversity and clonal complexity of the regenerated HSC compartment. Here, we have used expressible barcodes, which can be sequenced in conventional single cell RNAseq assays, to simultaneously record the functional outcomes and transcriptional states of thousands of HSCs. Our analysis revealed multiple clonal HSC behaviors following transplantation that drastically differ in their differentiation activity, lineage-bias and self-renewal. Surprisingly, we witnessed a large fraction of clones that efficiently repopulate the HSC compartment but show limited contribution to differentiated progeny. Furthermore, these inactive clones have increased competitive multilineage serial repopulating capacity, implying that shortly after transplant a subset of clones reestablishes the native-like LT-HSC behaviors. Our results also argue that this clonal distribution of labor is controlled by cell autonomous, heritable properties (i.e. the epigenetic cell state). Then, using only our clonal readouts to segregate single HSC transcriptomes, we unveiled the transcriptional signatures that associated with unique HSC outcomes (platelet bias, clonal expansion, dormancy, etc.) and unraveled, for the first time, a gene signature for functional long-term serially repopulating clones. We interrogated the drivers of this cell state using an in vivo inducible CRISPR screening and identified 5 novel regulators that are required to regenerate the HSC compartment in a cell autonomous fashion. In conclusion, we demonstrate that functional LT-HSCs share more similar properties in native and transplantation hematopoiesis than previously expected. Consequently, we unveil a definition of the essential, common functional properties of HSCs and the molecular programs that control them. Figure 1 Disclosures No relevant conflicts of interest to declare.


2016 ◽  
Vol 113 (43) ◽  
pp. 12192-12197 ◽  
Author(s):  
Jared M. Fischer ◽  
Peter P. Calabrese ◽  
Ashleigh J. Miller ◽  
Nina M. Muñoz ◽  
William M. Grady ◽  
...  

Intestinal stem cells (ISCs) are maintained by a niche mechanism, in which multiple ISCs undergo differential fates where a single ISC clone ultimately occupies the niche. Importantly, mutations continually accumulate within ISCs creating a potential competitive niche environment. Here we use single cell lineage tracing following stochastic transforming growth factor β receptor 2 (TgfβR2) mutation to show cell autonomous effects of TgfβR2 loss on ISC clonal dynamics and differentiation. Specifically, TgfβR2 mutation in ISCs increased clone survival while lengthening times to monoclonality, suggesting that Tgfβ signaling controls both ISC clone extinction and expansion, independent of proliferation. In addition, TgfβR2 loss in vivo reduced crypt fission, irradiation-induced crypt regeneration, and differentiation toward Paneth cells. Finally, altered Tgfβ signaling in cultured mouse and human enteroids supports further the in vivo data and reveals a critical role for Tgfβ signaling in generating precursor secretory cells. Overall, our data reveal a key role for Tgfβ signaling in regulating ISCs clonal dynamics and differentiation, with implications for cancer, tissue regeneration, and inflammation.


2020 ◽  
Author(s):  
Jenny A.F. Vermeer ◽  
Jonathan Ient ◽  
Bostjan Markelc ◽  
Jakob Kaeppler ◽  
Lydie M.O. Barbeau ◽  
...  

AbstractIntratumoural hypoxia is a common characteristic of malignant treatment-resistant cancers. However, hypoxia-modification strategies for the clinic remain elusive. To date little is known on the behaviour of individual hypoxic tumour cells in their microenvironment. To explore this issue in a spatial and temporally-controlled manner we developed a genetically encoded sensor by fusing the O2-labile Hypoxia-Inducible Factor 1α to eGFP and a tamoxifen-regulated Cre recombinase. Under normoxic conditions HIF-1α is degraded but under hypoxia, the HIF-1α-GFP-Cre-ERT2 fusion protein is stabilised and in the presence of tamoxifen activates a tdTomato reporter gene that is constitutively expressed in hypoxic progeny. We visualise the random distribution of hypoxic tumour cells from hypoxic or necrotic regions and vascularised areas using immunofluorescence and intravital microscopy. Once tdTomato expression is induced, it is stable for at least 4 weeks. Using this system, we could show that the post-hypoxic cells were more proliferative in vivo than non-labelled cells. Our results demonstrate that single-cell lineage tracing of hypoxic tumour cells can allow visualisation of their behaviour in living tumours using intravital microscopy. This tool should prove valuable for the study of dissemination and treatment response of post-hypoxic tumour cells in vivo at single-cell resolution.Summary StatementHere we developed and characterised a novel HIF-1α-Cre fusion gene to trace the progeny of hypoxic tumour cells in a temporal and spatially resolved manner using intravital microscopy.


2021 ◽  
Author(s):  
Kai Miao ◽  
Aiping Zhang ◽  
Fangyuan Shao ◽  
Lijian Wang ◽  
Xin Zhang ◽  
...  

Abstract Cancer metastasis is the primary cause of cancer-related death, yet the forces that drive cancer cells through various steps and different routes to distinct target organs/tissues remain elusive. In this study, we applied a CellTag system-based single-cell lineage tracing approach to show the metastasis rate and route of breast cancer cells and their interactions with the tumour microenvironment (TME) during metastasis. The results indicate that only a small fraction of cells can intravasate from the primary site into the blood circulation, whereas more cells disseminate through the lymphatic system to different organs. Tumour cells derived from the same progenitor cell exhibit different gene expression patterns in different soils, and the cancer cell-TME communication paradigm varies significantly between primary and metastatic tumours. Furthermore, metastable cells require a prewired IL-2 expression ability to migrate in vivo. In summary, leveraging a single-cell lineage tracing system, we demonstrate that the crosstalk between tumour cells and the TME is the driving force controlling the preferential metastatic fate of cancer cells through the lymphatic system and that this metastasis can be suppressed by knockdown of IL-2.


2020 ◽  
Vol 13 (7) ◽  
pp. dmm044768 ◽  
Author(s):  
Jenny A. F. Vermeer ◽  
Jonathan Ient ◽  
Bostjan Markelc ◽  
Jakob Kaeppler ◽  
Lydie M. O. Barbeau ◽  
...  

ABSTRACTIntratumoural hypoxia is a common characteristic of malignant treatment-resistant cancers. However, hypoxia-modification strategies for the clinic remain elusive. To date, little is known on the behaviour of individual hypoxic tumour cells in their microenvironment. To explore this issue in a spatial and temporally controlled manner, we developed a genetically encoded sensor by fusing the O2-labile hypoxia-inducible factor 1α (HIF-1α) protein to eGFP and a tamoxifen-regulated Cre recombinase. Under normoxic conditions, HIF-1α is degraded but, under hypoxia, the HIF-1α-GFP-Cre-ERT2 fusion protein is stabilised and in the presence of tamoxifen activates a tdTomato reporter gene that is constitutively expressed in hypoxic progeny. We visualise the random distribution of hypoxic tumour cells from hypoxic or necrotic regions and vascularised areas using immunofluorescence and intravital microscopy. Once tdTomato expression is induced, it is stable for at least 4 weeks. Using this system, we could show in vivo that the post-hypoxic cells were more proliferative than non-labelled cells. Our results demonstrate that single-cell lineage tracing of hypoxic tumour cells can allow visualisation of their behaviour in living tumours using intravital microscopy. This tool should prove valuable for the study of dissemination and treatment response of post-hypoxic tumour cells in vivo at single-cell resolution.This article has an associated First Person interview with the joint first authors of the paper.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Sicong He ◽  
Ye Tian ◽  
Shachuan Feng ◽  
Yi Wu ◽  
Xinwei Shen ◽  
...  

Heterogeneity broadly exists in various cell types both during development and at homeostasis. Investigating heterogeneity is crucial for comprehensively understanding the complexity of ontogeny, dynamics, and function of specific cell types. Traditional bulk-labeling techniques are incompetent to dissect heterogeneity within cell population, while the new single-cell lineage tracing methodologies invented in the last decade can hardly achieve high-fidelity single-cell labeling and long-term in-vivo observation simultaneously. In this work, we developed a high-precision infrared laser-evoked gene operator heat-shock system, which uses laser-induced CreERT2 combined with loxP-DsRedx-loxP-GFP reporter to achieve precise single-cell labeling and tracing. In vivo study indicated that this system can precisely label single cell in brain, muscle and hematopoietic system in zebrafish embryo. Using this system, we traced the hematopoietic potential of hemogenic endothelium (HE) in the posterior blood island (PBI) of zebrafish embryo and found that HEs in the PBI are heterogeneous, which contains at least myeloid unipotent and myeloid-lymphoid bipotent subtypes.


Sign in / Sign up

Export Citation Format

Share Document