scholarly journals Melt-driven mechanochemical phase transformations in moderately exothermic powder mixtures

2016 ◽  
Vol 15 (12) ◽  
pp. 1280-1286 ◽  
Author(s):  
Samuel A. Humphry-Baker ◽  
Sebastiano Garroni ◽  
Francesco Delogu ◽  
Christopher A. Schuh
2016 ◽  
Vol 869 ◽  
pp. 58-63
Author(s):  
Luiz Otávio Vicentin Maruya ◽  
Bruna Rage Baldone Lara ◽  
Belmira Benedita de Lima ◽  
Vanessa Motta Chad ◽  
Gilberto Carvalho Coelho ◽  
...  

This study reports on effect of boron and carbon addition on the phase transformations during ball milling and subsequent sintering of Si3N4+B and Si3N4+C powder mixtures. Ball milling at room temperature was conducted using stainless steel vials (225 mL) and balls (19mm diameter), 300 rpm and a bal-to-powder weight ratio of 10:1. The as-milled powders were uniaxially compacted in order to obtain cylinder samples with 10 mm diameter, which were subsequently sintered under nitrogen atmosphere at 1500°C for 1h. Characterization of the as-milled powders and sintered samples was performed by X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. Only peaks of Si3N4 were identified in X-ray diffractograms of as-milled Si3N4+B and Si3N4+C powders, suggesting that metastable structures were found during milling. After sintering at 1500°C for 1h, the Si3N4+BN and Si3N4+SiC ceramic composites were formed from the mechanically alloyed Si3N4+B and Si3N4+C powders.


2001 ◽  
Vol 299 (3-4) ◽  
pp. 236-241 ◽  
Author(s):  
S.D Kaloshkin ◽  
V.V Tcherdyntsev ◽  
I.A Tomilin ◽  
Yu.V Baldokhin ◽  
E.V Shelekhov

2010 ◽  
Vol 18 (11) ◽  
pp. 2030-2033 ◽  
Author(s):  
Song Li ◽  
Guoqiang Xie ◽  
Dmitri V. Louzguine-Luzgin ◽  
Ziping Cao ◽  
Noboru Yoshikawa ◽  
...  

2018 ◽  
Vol 54 (1) ◽  
pp. 37-41 ◽  
Author(s):  
B. K. Karakozov ◽  
M. K. Skakov ◽  
Sh. R. Kurbanbekov ◽  
V. V. Baklanov ◽  
A. A. Sitnikov ◽  
...  

Author(s):  
P. G. Kotula ◽  
D. D. Erickson ◽  
C. B. Carter

High-resolution field-emission-gun scanning electron microscopy (FESEM) has recently emerged as an extremely powerful method for characterizing the micro- or nanostructure of materials. The development of high efficiency backscattered-electron detectors has increased the resolution attainable with backscattered-electrons to almost that attainable with secondary-electrons. This increased resolution allows backscattered-electron imaging to be utilized to study materials once possible only by TEM. In addition to providing quantitative information, such as critical dimensions, SEM is more statistically representative. That is, the amount of material that can be sampled with SEM for a given measurement is many orders of magnitude greater than that with TEM.In the present work, a Hitachi S-900 FESEM (operating at 5kV) equipped with a high-resolution backscattered electron detector, has been used to study the α-Fe2O3 enhanced or seeded solid-state phase transformations of sol-gel alumina and solid-state reactions in the NiO/α-Al2O3 system. In both cases, a thin-film cross-section approach has been developed to facilitate the investigation. Specifically, the FESEM allows transformed- or reaction-layer thicknesses along interfaces that are millimeters in length to be measured with a resolution of better than 10nm.


Author(s):  
K. Barmak

Generally, processing of thin films involves several annealing steps in addition to the deposition step. During the annealing steps, diffusion, transformations and reactions take place. In this paper, examples of the use of TEM and AEM for ex situ and in situ studies of reactions and phase transformations in thin films will be presented.The ex situ studies were carried out on Nb/Al multilayer thin films annealed to different stages of reaction. Figure 1 shows a multilayer with dNb = 383 and dAl = 117 nm annealed at 750°C for 4 hours. As can be seen in the micrograph, there are four phases, Nb/Nb3-xAl/Nb2-xAl/NbAl3, present in the film at this stage of the reaction. The composition of each of the four regions marked 1-4 was obtained by EDX analysis. The absolute concentration in each region could not be determined due to the lack of thickness and geometry parameters that were required to make the necessary absorption and fluorescence corrections.


Author(s):  
P. Moine ◽  
G. M. Michal ◽  
R. Sinclair

Premartensitic effects in near equiatomic TiNi have been pointed out by several authors(1-5). These include anomalous contrast in electron microscopy images (mottling, striations, etc. ),diffraction effects(diffuse streaks, extra reflections, etc.), a resistivity peak above Ms (temperature at which a perceptible amount of martensite is formed without applied stress). However the structural changes occuring in this temperature range are not well understood. The purpose of this study is to clarify these phenomena.


Sign in / Sign up

Export Citation Format

Share Document