scholarly journals Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis

Cell Research ◽  
2012 ◽  
Vol 22 (12) ◽  
pp. 1650-1665 ◽  
Author(s):  
Ren-Jie Tang ◽  
Hua Liu ◽  
Yang Yang ◽  
Lei Yang ◽  
Xiao-Shu Gao ◽  
...  
Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 672 ◽  
Author(s):  
Aizheng Yang ◽  
Saqib Saleem Akhtar ◽  
Qiang Fu ◽  
Muhammad Naveed ◽  
Shahid Iqbal ◽  
...  

One of the major challenges in agriculture is to ensure sufficient and healthy food availability for the increasing world population in near future. This requires maintaining sustainable cultivation of crop plants under varying environmental stresses. Among these stresses, salinity is the second most abundant threat worldwide after drought. One of the promising strategies to mitigate salinity stress is to cultivate halotolerant crops such as quinoa. Under high salinity, performance can be improved by plant growth promoting bacteria (PGPB). Among PGPB, endophytic bacteria are considered better in stimulating plant growth compared to rhizosphere bacteria because of their ability to colonize both in plant rhizosphere and plant interior. Therefore, in the current study, a pot experiment was conducted in a controlled greenhouse to investigate the effects of endophytic bacteria i.e., Burkholderia phytofirmans PsJN on improving growth, physiology and yield of quinoa under salinity stress. At six leaves stage, plants were irrigated with saline water having either 0 (control) or 400 mM NaCl. The results indicated that plants inoculated with PsJN mitigated the negative effects of salinity on quinoa resulting in increased shoot biomass, grain weight and grain yield by 12%, 18% and 41% respectively, over un-inoculated control. Moreover, inoculation with PsJN improved osmotic adjustment and ion homeostasis ability. In addition, leaves were also characterized for five key reactive oxygen species (ROS) scavenging enzyme in response to PsJN treatment. This showed higher activity of catalase (CAT) and dehydroascobate reductase (DHAR) in PsJN-treated plants. These findings suggest that inoculation of quinoa seeds with Burkholderia phytofirmans PsJN could be used for stimulating growth and yield of quinoa in highly salt-affected soils.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 561 ◽  
Author(s):  
Roberta Calone ◽  
Rabab Sanoubar ◽  
Carla Lambertini ◽  
Maria Speranza ◽  
Livia Vittori Antisari ◽  
...  

Salinity is a major constraint for plant growth in world areas exposed to salinization. Sorghum bicolor (L.) Moench is a species that has received attention for biomass production in saline areas thanks to drought and salinity tolerance. To improve the knowledge in the mechanisms of salt tolerance and sodium allocation to plant organs, a pot experiment was set up. The experimental design combined three levels of soil salinity (0, 3, and 6 dS m−1) with three levels of water salinity (0, 2–4, and 4–8 dS m−1) and two water regimes: no salt leaching (No SL) and salt leaching (SL). This latter regime was carried out with the same three water salinity levels and resulted in average +81% water supply. High soil salinity associated with high water salinity (HSS-HWS) affected plant growth and final dry weight (DW) to a greater extent in No SL (−87% DW) than SL (−42% DW). Additionally, HSS-HWS determined a stronger decrease in leaf water potential and relative water content under No SL than SL. HSS-HWS with No SL resulted in a higher Na bioaccumulation from soil to plant and in translocation from roots to stem and, finally, leaves, which are the most sensitive organ. Higher water availability (SL), although determining higher salt input when associated with HWS, limited Na bioaccumulation, prevented Na translocation to leaves, and enhanced selective absorption of Ca vs. Na. At plant level, higher Na accumulation was associated with lower Ca and Mg accumulation, especially in No SL. This indicates altered ion homeostasis and cation unbalance.


2001 ◽  
Vol 47 (10) ◽  
pp. 916-924 ◽  
Author(s):  
Tika B Adhikari ◽  
C M Joseph ◽  
Guoping Yang ◽  
Donald A Phillips ◽  
Louise M Nelson

Of 102 rhizoplane and endophytic bacteria isolated from rice roots and stems in California, 37% significantly (P [Formula: see text] 0.05) inhibited the growth in vitro of two pathogens, Achlya klebsiana and Pythium spinosum, causing seedling disease of rice. Four endophytic strains were highly effective against seedling disease in growth pouch assays, and these were identified as Pseudomonas fluorescens (S3), Pseudomonas tolaasii (S20), Pseudomonas veronii (S21), and Sphingomonas trueperi (S12) by sequencing of amplified 16S rRNA genes. Strains S12, S20, and S21 contained the nitrogen fixation gene, nifD, but only S12 was able to reduce acetylene in pure culture. The four strains significantly enhanced plant growth in the absence of pathogens, as evidenced by increases in plant height and dry weight of inoculated rice seedlings relative to noninoculated rice. Three bacterial strains (S3, S20, and S21) were evaluated in pot bioassays and reduced disease incidence by 50%–73%. Strain S3 was as effective at suppressing disease at the lowest inoculum density (106 CFU/mL) as at higher density (108 CFU/mL or undiluted suspension). This study indicates that selected endophytic bacterial strains have potential for control of seedling disease of rice and for plant growth promotion.Key words: biological control, plant growth promotion, endophytes, rice, seedling disease.


2005 ◽  
Vol 82 (3) ◽  
pp. 85-102 ◽  
Author(s):  
C.L. Doumbou ◽  
M.K. Hamby Salove ◽  
D.L. Crawford ◽  
C. Beaulieu

Actinomycetes represent a high proportion of the soil microbial biomass and have the capacity to produce a wide variety of antibiotics and of extracellular enzymes. Several strains of actinomycetes have been found to protect plants against plant diseases. This review focuses on the potential of actinomycetes as (a) source of agroactive compounds, (b) plant growth promoting organisms, and (c) biocontrol tools of plant diseases. This review also addresses examples of biological control of fungal and bacterial plant pathogens by actinomycetes species which have already reached the market or are likely to be exploited commercially within the next few years.


2018 ◽  
Vol 11 (7) ◽  
pp. 928-942 ◽  
Author(s):  
Junling Huai ◽  
Xinyu Zhang ◽  
Jialong Li ◽  
Tingting Ma ◽  
Ping Zha ◽  
...  

1996 ◽  
Vol 1 (12) ◽  
pp. 411 ◽  
Author(s):  
Edvins Miklashevichs ◽  
Inge Czaja ◽  
Horst Röhrig ◽  
Jürgen Schmidt ◽  
Michael John ◽  
...  

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Wen Qing Yu ◽  
Peng Li ◽  
Feng Chao Yan ◽  
Gui Ping Zheng ◽  
Wen Zhi Liu ◽  
...  

AbstractProtein elicitors can induce plant systemic resistance to pathogens. In an earlier study, we cloned an EsxA gene from the plant growth-promoting rhizobacterium Paenibacillus terrae NK3-4 and expressed it in Pichia pastoris. In addition to being important for the pathogenicity of animal pathogens, EsxA can also induce an immune response in animals. While, we found the exogenously expressed EsxA has the activity of elicitor, which can trigger hypersensitive response and reactive oxygen species burst in leaves as well as enhanced rice plant growth. The effects of EsxA on seedling blight (Fusarium oxysporum) resistance and gene transcription, including pathogenesis-related (PR) genes in rice were evaluated. The germination rate was 95.0% for seeds treated with EsxA and then inoculated with F. oxysporum, which was 2.8-times higher than that of F. oxysporum-infected control seeds that were not treated with EsxA (Con). The buds and roots of EsxA-treated seedlings were 2.4- and 15.9-times longer than those of Con seedlings. The plants and roots of seedlings dipped in an EsxA solution and then inoculated with F. oxysporum were longer than those of the Con seedlings. Theplant length, number of total roots, and number of white roots were respectively 23.2%, 1.74-times, and 7.42-times greater for the seedlings sprayed with EsxA and then inoculated with F. oxysporum than for the Con seedlings. The EsxA induction efficiency (spray treatment) on seedling blight resistance was 60.9%. The transcriptome analysis revealed 1137 and 239 rice genes with EsxA-induced up-regulated and down-regulated transcription levels, respectively. At 48 h after the EsxA treatment, the transcription of 611 and 160 genes was up-regulated and down-regulated, respectively, compared with the transcription levels for the untreated control at the same time-point. Many disease resistance-related PR genes had up-regulated transcription levels. The qPCR data were consistent with the transcriptome sequencing results. EsxA triggered rice ISR to seedling blight and gene differential transcription, including the up-regulated transcription of rice PR genes. These findings may be relevant for the use of EsxA as a protein elicitor to control plant diseases.


Sign in / Sign up

Export Citation Format

Share Document