Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix

2014 ◽  
Vol 8 (5) ◽  
pp. 392-399 ◽  
Author(s):  
Francesco Meinardi ◽  
Annalisa Colombo ◽  
Kirill A. Velizhanin ◽  
Roberto Simonutti ◽  
Monica Lorenzon ◽  
...  
Author(s):  
Haiguang Zhao ◽  
Guiju Liu ◽  
Shujie You ◽  
Franco V. A. Camargo ◽  
Margherita Zavelani-Rossi ◽  
...  

Highly efficient large-area luminescent solar concentrators (LSCs) were demonstrated using colloidal C-dots. The large-area LSC (225 cm2) exhibited an external optical efficiency of 2.2% (under natural sun irradiation, 60 mW cm−2).


Joule ◽  
2020 ◽  
Vol 4 (9) ◽  
pp. 1988-2003 ◽  
Author(s):  
Sara Mattiello ◽  
Alessandro Sanzone ◽  
Francesco Bruni ◽  
Marina Gandini ◽  
Valerio Pinchetti ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3770
Author(s):  
Fahad Mateen ◽  
Namcheol Lee ◽  
Sae Youn Lee ◽  
Syed Taj Ud Din ◽  
Woochul Yang ◽  
...  

Luminescent solar concentrators (LSCs) provide a transformative approach to integrating photovoltaics into a built environment. In this paper, we report thin-film LSCs composed of intramolecular charge transfer fluorophore (DACT-II) and discuss the effect of two polymers, polymethyl methacrylate (PMMA), and poly (benzyl methacrylate) (PBzMA) on the performance of large-area LSCs. As observed experimentally, DACT-II with the charge-donating diphenylaminocarbazole and charge-accepting triphenyltriazine moieties shows a large Stokes shift and limited re-absorption losses in both polymers. Our results show that thin-film LSC (10 × 10 × 0.3 cm3) with optimized concentration (0.9 wt%) of DACT-II in PBzMA gives better performance than that in the PMMA matrix. In particular, optical conversion efficiency (ηopt) and power-conversion efficiency (ηPCE) of DACT-II/PBzMA LSC are 2.32% and 0.33%, respectively, almost 1.2 times higher than for DACT-II/PMMA LSC.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jiurong Li ◽  
Haiguang Zhao ◽  
Xiujian Zhao ◽  
Xiao Gong

Luminescent solar concentrators (LSCs) can collect solar light from a large area and concentrate it to their small-area edges mounted with solar cells for efficient solar-to-electricity conversion. Thus, LSCs show...


Nano Energy ◽  
2017 ◽  
Vol 37 ◽  
pp. 214-223 ◽  
Author(s):  
Haiguang Zhao ◽  
Yufeng Zhou ◽  
Daniele Benetti ◽  
Dongling Ma ◽  
Federico Rosei

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 451 ◽  
Author(s):  
Ana Frias ◽  
Marita Cardoso ◽  
Ana Bastos ◽  
Sandra Correia ◽  
Paulo André ◽  
...  

The integration of photovoltaic (PV) elements in urban environments is gaining visibility due to the current interest in developing energetically self-sustainable buildings. Luminescent solar concentrators (LSCs) may be seen as a solution to convert urban elements, such as façades and windows, into energy-generation units for zero-energy buildings. Moreover, LSCs are able to reduce the mismatch between the AM1.5G spectrum and the PV cells absorption. In this work, we report optically active coatings for LSCs based on lanthanide ions (Ln3+ = Eu3+, Tb3+)-doped surface functionalized ionosilicas (ISs) embedded in poly(methyl methacrylate) (PMMA). These new visible-emitting films exhibit large Stokes-shift, enabling the production of transparent coatings with negligible self-absorption and large molar extinction coefficient and brightness values (~2 × 105 and ~104 M−1∙cm−1, respectively) analogous to that of orange/red-emitting organic dyes. LSCs showed great potential for efficient and environmentally resistant devices, with optical conversion efficiency values of ~0.27% and ~0.34%, respectively.


Sign in / Sign up

Export Citation Format

Share Document