An mRNA-rRNA base-pairing mechanism for translation initiation in eukaryotes

2005 ◽  
Vol 13 (1) ◽  
pp. 30-34 ◽  
Author(s):  
John Dresios ◽  
Stephen A Chappell ◽  
Wei Zhou ◽  
Vincent P Mauro
2018 ◽  
Vol 93 (5) ◽  
Author(s):  
Helena Jaramillo-Mesa ◽  
Megan Gannon ◽  
Elijah Holshbach ◽  
Jincan Zhang ◽  
Robyn Roberts ◽  
...  

ABSTRACTSeveral viruses encode an internal ribosome entry site (IRES) at the 5′ end of their RNA, which, unlike most cellular mRNAs, initiates translation in the absence of a 5′ m7GpppG cap. Here, we report a uniquely regulated translation enhancer found in the 739-nucelotide (nt) sequence of the Triticum mosaic virus (TriMV) leader sequence that distinguishes the preferred initiation site from a plethora of IRES-encoded AUG triplets. Through deletion mutations of the TriMV 5′ untranslated region (UTR), we show that the TriMV 5′ UTR encodes acis-acting picornaviral Y16-X11-AUG-like motif with a 16-nt polypyrimidine CU-tract (Y16), at a precise, 11-nt distance (X11) from the preferred 13th AUG. Phylogenetic analyses indicate that this motif is conserved among potyviral leader sequences with multiple AUGs. Consistent with a broadly conserved mechanism, the motif could be functionally replaced with known picornavirus YX-AUG motifs and is predicted to function as target sites for the 18S rRNA by direct base pairing. Accordingly, mutations that disrupted overall complementarity to the 18S rRNA markedly reduced TriMV IRES activity, as did the delivery of antisense oligonucleotides designed to block YX-AUG accessibility. To our knowledge, this is the first report of a plant viral IRES YX-AUG motif, and our findings suggest that a conserved mechanism regulates translation for multiple economically important plant and animal positive single-stranded RNA viruses.IMPORTANCEUncapped viral RNAs often rely on their 5′ leader sequences to initiate translation, and the Triticum mosaic virus (TriMV) devotes an astonishing 7% of its genome to directing ribosomes to the correct AUG. Here we uncover a novel mechanism by which a TriMVcis-regulatory element controls cap-independent translation. The upstream region of the functional AUG contains a 16-nt polypyrimidine tract located 11 nt from the initiation site. Based on functional redundancy with similar motifs derived from human picornaviruses, the motif is likely to operate by directing ribosome targeting through base pairing with 18S rRNA. Our results provide the first report of a broad-spectrum mechanism regulating translation initiation for both plant- and animal-hosted picornaviruses.


2017 ◽  
Vol 199 (14) ◽  
Author(s):  
Paul Babitzke ◽  
Michael O'Connor

ABSTRACT The canonical translation initiation mechanism involves base pairing between the mRNA and 16S rRNA. However, a variety of identified mechanisms deviate from this conventional route. Beck and Janssen (J Bacteriol 199:e00091-17, 2017, https://doi.org/10.1128/JB.00091-17 ) have recently described another noncanonical mode of translation initiation. Here, we describe how this process differs from previously reported mechanisms, with the hope that it will foster increased awareness of the diversity of regulatory mechanisms that await discovery.


2005 ◽  
Vol 872 ◽  
Author(s):  
Xu Wang ◽  
Krishna Singh ◽  
Chris Tsai ◽  
Roger Lake ◽  
Alexander Balandin ◽  
...  

AbstractProperly designed sequences of oligonucleotides can be employed as scaffolds or templates for the self-organization of nanostructures and devices, through the Watson-Crick base pairing mechanism which serves as a programmable smart glue. In this paper, we report the Platinum metallization of peptide nucleic acid (PNA) sequences for the first time. PNA is an analogue of DNA and has a neutral backbone which provides stronger hybridization, greater stability and higher specificity in base pairing. Pt ions were reduced from a salt solution and localized over the PNA fragments where the size of the Pt colloids depends on the duration of chemical reduction. Computations of the high lying occupied and lowlying unoccupied orbitals indicated that Pt nanoparticles bind easily on both the Thymine (T) bases and the backbone in the PNA.


2021 ◽  
Vol 49 (18) ◽  
pp. 10589-10603 ◽  
Author(s):  
Inam Ul Haq ◽  
Sabine Brantl ◽  
Peter Müller

Abstract SR1 is a dual-function sRNA from Bacillus subtilis. It inhibits translation initiation of ahrC mRNA encoding the transcription activator of the arginine catabolic operons. Base-pairing is promoted by the RNA chaperone CsrA, which induces a slight structural change in the ahrC mRNA to facilitate SR1 binding. Additionally, SR1 encodes the small protein SR1P that interacts with glyceraldehyde-3P dehydrogenase A to promote binding to RNase J1 and enhancing J1 activity. Here, we describe a new target of SR1, kinA mRNA encoding the major histidine kinase of the sporulation phosphorelay. SR1 and kinA mRNA share 7 complementary regions. Base-pairing between SR1 and kinA mRNA decreases kinA translation without affecting kinA mRNA stability and represses transcription of the KinA/Spo0A downstream targets spoIIE, spoIIGA and cotA. The initial interaction between SR1 and kinA mRNA occurs 10 nt downstream of the kinA start codon and is decisive for inhibition. The sr1 encoded peptide SR1P is dispensable for kinA regulation. Deletion of sr1 accelerates sporulation resulting in low quality spores with reduced stress resistance and altered coat protein composition which can be compensated by sr1 overexpression. Neither CsrA nor Hfq influence sporulation or spore properties.


Sign in / Sign up

Export Citation Format

Share Document