scholarly journals Sensitization of the reinforcing value of high energy density foods is associated with increased zBMI gain in adolescents

Author(s):  
Jennifer L. Temple ◽  
Amanda M. Ziegler ◽  
Amanda K. Crandall ◽  
Tegan Mansouri ◽  
Lori Hatzinger ◽  
...  

Abstract Background/Objectives Characterizing behavioral phenotypes that predict increased zBMI gain during adolescence could identify novel intervention targets and prevent the development of obesity. The purpose of this study was to determine if sensitization of the relative reinforcing value (RRV) of high (HED) or low energy density (LED) foods predicts adolescent weight gain trajectories. A secondary aim was to test the hypothesis that relationships between sensitization of the RRV of food and weight change are moderated by delay discounting (DD). Subjects/Methods We conducted a prospective, longitudinal cohort study in 201 boys and girls with an average zBMI of 0.4, who began the study between the ages of 12 and 14 years and completed the study 2 years later. Participants completed five laboratory visits where the RRV of HED and LED, and DD were assessed at a baseline (visits 1, 2, and 4) and then RRV was measured again after participants consumed a portion of the same HED and LED food for 2 weeks (visits 3 and 5; order counterbalanced). Increases (>1) in the RRV from baseline to post-daily intake were categorized as “sensitization” and decreases (≤1) were categorized as “satiation.” Participants returned to the laboratory for follow-up visits at 6, 15, and 24 months to have height and weight taken and to complete additional assessments. Results Sensitization to HED food was associated with a greater zBMI change over time (β = 0.0070; p = 0.035). There was no impact of sensitization to LED food or interaction between sensitization to HED and LED food on zBMI change and no moderation of DD on the relationship between HED sensitization and zBMI change (all p > 0.05). Conclusion Our prior work showed that sensitization to HED food is cross-sectionally associated with greater zBMI. This study extends this work by demonstrating that sensitization to HED food prospectively predicts increased zBMI gain over time in adolescents without obesity. Future studies should determine if sensitization can be modified or reduced through behavioral intervention. Trial registration Clinicaltrials.gov: NCT04027608.

2019 ◽  
Vol 21 (43) ◽  
pp. 24034-24041
Author(s):  
Chuli Sun ◽  
Weijing Zhang ◽  
Yongjun Lü ◽  
Feng Wang ◽  
Wei Guo ◽  
...  

Studies on the relationship between the microscopic properties and macroscopic behaviors of energetic compounds may provide clues for the synthesis and assessment of novel high energy density materials.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4202
Author(s):  
Yingjie Jiang ◽  
Yujia Li ◽  
Haibo Yang ◽  
Nanying Ning ◽  
Ming Tian ◽  
...  

The dielectric elastomer (DE) generator (DEG), which can convert mechanical energy to electrical energy, has attracted considerable attention in the last decade. Currently, the energy-harvesting performances of the DEG still require improvement. One major reason is that the mechanical and electrical properties of DE materials are not well coordinated. To provide guidance for producing high-performance DE materials for the DEG, the relationship between the intrinsic properties of DE materials and the energy-harvesting performances of the DEG must be revealed. In this study, a simplified but validated electromechanical model based on an actual circuit is developed to study the relationship between the intrinsic properties of DE materials and the energy-harvesting performance. Experimental verification of the model is performed, and the results indicate the validity of the proposed model, which can well predict the energy-harvesting performances. The influences of six intrinsic properties of DE materials on energy-harvesting performances is systematically studied. The results indicate that a high breakdown field strength, low conductivity and high elasticity of DE materials are the prerequisites for obtaining high energy density and conversion efficiency. DE materials with high elongation at break, high permittivity and moderate modulus can further improve the energy density and conversion efficiency of the DEG. The ratio of permittivity and the modulus of the DE should be tailored to be moderate to optimize conversion efficiency (η) of the DEG because using DE with high permittivity but extremely low modulus may lead to a reduction in η due to the occurrence of premature “loss of tension”.


Aerospace ◽  
2004 ◽  
Author(s):  
Vishnu Baba Sundaresan ◽  
Honghui Tan ◽  
Donald J. Leo ◽  
John Cuppoletti

Biological systems such as plants produce large deformations due to the conversion of chemical energy to mechanical energy. These chemomechanical energy conversions are controlled by the transport of charge and fluid across permeable membranes within the cellular structure of the biological system. In this paper we analyze the potential for using biological transport mechanisms to produce materials with controllable actuation properties. An energetics analysis is performed to quantify the relationship between the introduction of chemical energy in the form of ATP to the resulting osmotic pressure variation within an enclosed membrane. Our analysis demonstrates that pressure variations of between 5 and 15 MPa are achievable. The pressure variations are then coupled to a finite element analysis to determine the ability of organized arrays to produce extensional and bending actuation in thin membranes. Our analysis demonstrates that internal pressure variations on the order of 10 MPa can produce actuation materials with extensional energy density on the order of 100 kJ/m3 and bending energy density on the order of 10 kJ/m3.


1966 ◽  
Author(s):  
S. CHODOSH ◽  
E. KATSOULIS ◽  
M. ROSANSKY

2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2013 ◽  
Vol 28 (11) ◽  
pp. 1207-1212 ◽  
Author(s):  
Jian-Wen LI ◽  
Ai-Jun ZHOU ◽  
Xing-Quan LIU ◽  
Jing-Ze LI

2018 ◽  
Vol 28 (5) ◽  
pp. 273-278
Author(s):  
Beomhee Kang ◽  
Soonhyun Hong ◽  
Hongkwan Yoon ◽  
Dojin Kim ◽  
Chunjoong Kim

Sign in / Sign up

Export Citation Format

Share Document