Stressed rats fail to exhibit avoidance reactions to innately aversive social calls

Author(s):  
Ashutosh Shukla ◽  
Sumantra Chattarji
2018 ◽  
Author(s):  
Luiz G Gawryszewski ◽  
Mikael Cavallet

Conde et al (2011) reported a modulation of the spatial compatibility effect by the affective valence of soccer team figures. For Favorite team, it was faster to respond by pressing the key located on the stimulus side than the opposite key (ipsi- and contralateral keys, respectively). For Rival team, this pattern was reversed. These findings were interpreted as being due to approach and avoidance reactions which facilitate both the ipsilateral response to a positive stimulus and the contralateral response to a negative one and vice-versa. This hypothesis was challenged by arguing that there is no spatial compatibility effect when a mixed-rule task was used and that approach/avoidance reactions are not elicited when a keyboard was employed to execute the responses. Alternatively, it was proposed that Conde et al. (2011) results were due to task-set effects. Here, emotional faces (Happy, Angry and Fearful) faces were used to test the generality of effects elicited by affective stimuli and to disentangle task-set and approach/avoidance reactions hypotheses. We found that there is no task-set effect when the Happiness-Anger pair was used. Moreover, for the Happiness/Fear pair, there was an interaction between valence and spatial compatibility within a block of trials. These results suggest that: (i) the interaction between valence and spatial compatibility in the Affective SC task modulates the spatial compatibility effect; (ii) this modulation elicits a task-set effect that varies according to the pair of affective stimuli and (iv) the task-set effect may be due to an automatic orientation of the visual attention to the positive stimulus which facilitates the ipsilateral response conjoined with an inhibition of the ipsilateral response to the aversive stimulus, simulating a reversed compatibility effect to the negative stimulus.


BMC Zoology ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Karl Frafjord

Abstract Background Most temperate bats are regular hibernators in the winter. Knowledge about the length of their active season and how they adjust their nightly activity throughout the season, is critical to conservation. The characteristics of these are likely to vary with climate as well as latitude. This study investigated the flight activity of the soprano pipistrelle Pipistrellus pygmaeus in Frafjord, a small valley in the south-western corner of Norway (58° 50′N 6° 18′E) with an oceanic climate. Results Activity was recorded with an ultrasound recorder throughout April 2018 to June 2019 at one site, with supplemental recordings in March to June 2020, i.e., covering all months of the year. Recordings at other nearby sites were made in the summers (June–August) of 2016, 2017, 2019 and 2020, as well as some of the last days in December 2019 to the first days of January 2020. Overall, soprano pipistrelles were recorded flying in all months of the year, but very few in December–March. Regular activity was recorded from late April or early May until late October, and some recordings were also made in November. The highest numbers of recordings were made in August and September. Social calls, i.e. male song flights, were recorded from April to November, with the vast majority in August and September. Nearly all recordings were made between sunset and sunrise. Conclusions The soprano pipistrelle in this region showed regular activity through 6–7 months of the year. It adjusted its activity to the changing night length throughout the year, closely following sunset and sunrise. It was rarely recorded flying before sunset and almost never after sunrise. Most activity was recorded in the middle of the night, and social calls also followed this trend closely. Harems in late summer and autumn were confirmed in a bat box, which was also used for winter hibernation.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Dongge Guo ◽  
Jianan Ding ◽  
Heng Liu ◽  
Lin Zhou ◽  
Jiang Feng ◽  
...  

Abstract Background Why a variety of social animals emit foraging-associated calls during group foraging remains an open question. These vocalizations may be used to recruit conspecifics to food patches (i.e. food advertisement hypothesis) or defend food resources against competitors (food defence hypothesis), presumably depending on food availability. Insectivorous bats rely heavily on vocalizations for navigation, foraging, and social interactions. In this study, we used free-ranging big-footed myotis (Myotis macrodactylus Temminck, 1840) to test whether social calls produced in a foraging context serve to advertise food patches or to ward off food competitors. Using a combination of acoustic recordings, playback experiments with adult females and dietary monitoring (light trapping and DNA metabarcoding techniques), we investigated the relationship between insect availability and social vocalizations in foraging bats. Results The big-footed myotis uttered low-frequency social calls composed of 7 syllable types during foraging interactions. Although the dietary composition of bats varied across different sampling periods, Diptera, Lepidoptera, and Trichoptera were the most common prey consumed. The number of social vocalizations was primarily predicted by insect abundance, insect species composition, and echolocation vocalizations from conspecifics. The number of conspecific echolocation pulses tended to decrease following the emission of most social calls. Feeding bats consistently decreased foraging attempts and food consumption during playbacks of social calls with distinctive structures compared to control trials. The duration of flight decreased 1.29–1.96 fold in the presence of social calls versus controls. Conclusions These results support the food defence hypothesis, suggesting that foraging bats employ social calls to engage in intraspecific food competition. This study provides correlative evidence for the role of insect abundance and diversity in influencing the emission of social calls in insectivorous bats. Our findings add to the current knowledge of the function of social calls in echolocating bats.


2016 ◽  
Vol 120 ◽  
pp. 163-172 ◽  
Author(s):  
Kendra B. Sewall ◽  
Anna M. Young ◽  
Timothy F. Wright
Keyword(s):  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alfonso Deichler ◽  
Denisse Carrasco ◽  
Luciana Lopez-Jury ◽  
Tomas Vega-Zuniga ◽  
Natalia Márquez ◽  
...  

Abstract The parabigeminal nucleus (PBG) is the mammalian homologue to the isthmic complex of other vertebrates. Optogenetic stimulation of the PBG induces freezing and escape in mice, a result thought to be caused by a PBG projection to the central nucleus of the amygdala. However, the isthmic complex, including the PBG, has been classically considered satellite nuclei of the Superior Colliculus (SC), which upon stimulation of its medial part also triggers fear and avoidance reactions. As the PBG-SC connectivity is not well characterized, we investigated whether the topology of the PBG projection to the SC could be related to the behavioral consequences of PBG stimulation. To that end, we performed immunohistochemistry, in situ hybridization and neural tracer injections in the SC and PBG in a diurnal rodent, the Octodon degus. We found that all PBG neurons expressed both glutamatergic and cholinergic markers and were distributed in clearly defined anterior (aPBG) and posterior (pPBG) subdivisions. The pPBG is connected reciprocally and topographically to the ipsilateral SC, whereas the aPBG receives afferent axons from the ipsilateral SC and projected exclusively to the contralateral SC. This contralateral projection forms a dense field of terminals that is restricted to the medial SC, in correspondence with the SC representation of the aerial binocular field which, we also found, in O. degus prompted escape reactions upon looming stimulation. Therefore, this specialized topography allows binocular interactions in the SC region controlling responses to aerial predators, suggesting a link between the mechanisms by which the SC and PBG produce defensive behaviors.


Sign in / Sign up

Export Citation Format

Share Document