scholarly journals ZNF545 loss promotes ribosome biogenesis and protein translation to initiate colorectal tumorigenesis in mice

Oncogene ◽  
2021 ◽  
Author(s):  
Shiyan Wang ◽  
Chi Chun Wong ◽  
Yanquan Zhang ◽  
Junzhe Huang ◽  
Chuangen Li ◽  
...  

AbstractRibosome biogenesis plays a pivotal role in tumorigenesis by supporting robust protein translation. We investigate the functional and molecular mechanism of Zinc finger protein 545 (ZNF545), a transcriptional repressor for ribosomal RNA (rRNA), in colorectal cancer (CRC). ZNF545 was silenced in CRC compared to adjacent normal tissues (P < 0.0001), implying a tumor-suppressive role. Colon-specific Znf545 knockout in mice accelerated CRC in ApcMin/+ and azoxymethane/dextran sulfate sodium-induced CRC. Mechanistically, we demonstrated that ZNF545 uses its two zinc finger clusters to bind to minimal rDNA promoter, where it assembled transcriptional repressor complex by interacting with KAP1. Znf545 deletion in mouse embryonic fibroblasts not only increased rRNA transcription rate and the nucleolar size and number but also altered the nucleolar composition and architecture with an increased number of fibrillar centers surrounded by net-like dense fibrillar components. Consequently, Znf545 deletion promoted the gene expression of translation machinery, protein translation, and cell growth. Consistent with its tumor-suppressive role, ZNF545 overexpression in CRC cells induced growth arrest and apoptosis. Finally, administration of rRNA synthesis inhibitor, CX-5461, inhibited CRC development in Znf545Δ/ΔApcMin/+ mice. In conclusion, ZNF545 suppresses CRC through repressing rRNA transcription and protein translation. Targeting rRNA biosynthesis in ZNF545-silenced tumors is a potential therapeutic strategy for CRC.

2009 ◽  
Vol 29 (15) ◽  
pp. 4295-4307 ◽  
Author(s):  
Jenny B. DuRose ◽  
Donalyn Scheuner ◽  
Randal J. Kaufman ◽  
Lawrence I. Rothblum ◽  
Maho Niwa

ABSTRACT The endoplasmic reticulum (ER) is the major cellular compartment where folding and maturation of secretory and membrane proteins take place. When protein folding needs exceed the capacity of the ER, the unfolded protein response (UPR) pathway modulates gene expression and downregulates protein translation to restore homeostasis. Here, we report that the UPR downregulates the synthesis of rRNA by inactivation of the RNA polymerase I basal transcription factor RRN3/TIF-IA. Inhibition of rRNA synthesis does not appear to involve the well-characterized mTOR (mammalian target of rapamycin) pathway; instead, PERK-dependent phosphorylation of eIF2α plays a critical role in the inactivation of RRN3/TIF-IA. Downregulation of rRNA transcription occurs simultaneously or slightly prior to eIF2α phosphorylation-induced translation repression. Since rRNA is the most abundant RNA species, constituting ∼90% of total cellular RNA, its downregulation exerts a significant impact on cell physiology. Our study demonstrates the first link between regulation of translation and rRNA synthesis with phosphorylation of eIF2α, suggesting that this pathway may be broadly utilized by stresses that activate eIF2α kinases in order to coordinately regulate translation and ribosome biogenesis during cellular stress.


2021 ◽  
Author(s):  
Karla Terrazas Falcon ◽  
Kristin Watt ◽  
Soma Dash ◽  
Annita Achilleos ◽  
Emma Moore ◽  
...  

Ribosomal RNA (rRNA) transcription by RNA Polymerase I (Pol I) is a critical rate-limiting step in ribosome biogenesis, which is essential for cell survival. Despite its global function, disruptions in ribosome biogenesis cause tissue-specific birth defects called ribosomopathies which frequently affect craniofacial development. Here, we present a cellular and molecular mechanism to explain the susceptibility of craniofacial development to disruptions in Pol I transcription. We show that Pol I subunits are highly expressed in the neuroepithelium and neural crest cells (NCC), which generate most of the craniofacial skeleton. High expression of Pol I subunits sustains elevated rRNA transcription in NCC progenitors, which supports their high tissue-specific levels of protein translation, but also makes NCC particulalry sensitive to rRNA synthesis defects. Underpinning these findings, NCC-specific deletion of Pol I subunits Polr1a, Polr1c, and associated factor Tcof1 in mice cell-autonomously diminishes rRNA synthesis, which causes an imbalance between rRNA and ribosomal proteins. This leads to increased ribosomal protein binding to Mdm2 and concomitantly diminished Mdm2 binding to p53. Consequently, p53 protein accumulates, resulting in NCC apoptosis and craniofacial anomalies. Furthermore, compound mutations in Pol I subunits and associated factors specifically exacerbates the craniofacial anomalies characteristic of the ribosomopathies Treacher Collins Syndrome and Acrofacial Dysostosis Cincinnati Type. Our novel results therefore demonstrate the dynamic spatiotemporal requirement for rRNA transcription during mammalian cranial NCC development and corresponding tissue-specific threshold sensitivities to disruptions in rRNA transcription in the pathogenesis of craniofacial congenital diseases.


2021 ◽  
Author(s):  
Soma Dash ◽  
Paul Trainor

rRNA transcription and ribosome biogenesis are global processes required for growth and proliferation of all cells, yet perturbation of these processes in vertebrates leads to tissue-specific defects termed ribosomopathies. Mutations in rRNA transcription and processing proteins often lead to craniofacial anomalies, however the cellular and molecular reasons for this are poorly understood. Therefore, we examined the function of the most abundant nucleolar phosphoprotein, Nucleolin (Ncl), in vertebrate development. We discovered that Nucleolin is dynamically expressed during embryonic development with high enrichment in the craniofacial tissues. Consistent with this pattern of expression, ncl homozygous mutant (ncl-/-) zebrafish present with craniofacial anomalies such as mandibulofacial hypoplasia. We observe that ncl-/- mutants exhibit decreased rRNA synthesis and p53-dependent neuroepithelial cell death. In addition, the half-life of fgf8a mRNA is reduced in ncl-/- mutants, which perturbs Fgf signaling, resulting in misregulation of Sox9a mediated chondrogenesis and Runx2 mediated osteogenesis. Exogenous addition of human recombinant FGF8 to the mutant zebrafish significantly rescues the cranioskeletal phenotype, suggesting that Nucleolin regulates osteochondroprogenitor differentiation during craniofacial development by post-transcriptionally regulating Fgf signaling. Our work has therefore uncovered a novel tissue-specific function for Nucleolin in rRNA transcription and growth factor signaling during embryonic craniofacial development.


Author(s):  
Min Duan ◽  
Xiao-Juan Ke ◽  
Hong-Xia Lan ◽  
Xi Yuan ◽  
Peng Huang ◽  
...  

Abstract Gibberellins (GAs) play important roles in the regulation of plant growth and development. The green revolution gene SD1 encoding gibberellin 20-oxidase 2 (GA20ox2) has been widely used in modern rice breeding. However, the molecular mechanism of how SD1/OsGA20ox2 expression is regulated remains unclear. Here, we report a Cys2/His2 zinc finger protein ZFP207 acting as a transcriptional repressor of OsGA20ox2. ZFP207 was mainly accumulated in young tissues and more specifically in culm nodes. ZFP207-overexpression (ZFP207OE) plants displayed semidwarfism phenotype and small grains by modulating cell length. RNA interference of ZFP207 caused increased plant height and grain length. The application of exogenous GA3 could rescue the semidwarf phenotype of ZFP207OE rice seedlings. Moreover, ZFP207 repressed the expression of OsGA20ox2 via binding to its promoter region. Taken together, ZFP207 acts as a transcriptional repressor of SD1/OsGA20ox2 and it may play a critical role in plant growth and development in rice through the fine-tuning of GA biosynthesis .


2019 ◽  
Vol 20 (11) ◽  
pp. 2718 ◽  
Author(s):  
Manuela Piazzi ◽  
Alberto Bavelloni ◽  
Angela Gallo ◽  
Irene Faenza ◽  
William L. Blalock

Energetically speaking, ribosome biogenesis is by far the most costly process of the cell and, therefore, must be highly regulated in order to avoid unnecessary energy expenditure. Not only must ribosomal RNA (rRNA) synthesis, ribosomal protein (RP) transcription, translation, and nuclear import, as well as ribosome assembly, be tightly controlled, these events must be coordinated with other cellular events, such as cell division and differentiation. In addition, ribosome biogenesis must respond rapidly to environmental cues mediated by internal and cell surface receptors, or stress (oxidative stress, DNA damage, amino acid depletion, etc.). This review examines some of the well-studied pathways known to control ribosome biogenesis (PI3K-AKT-mTOR, RB-p53, MYC) and how they may interact with some of the less well studied pathways (eIF2α kinase and RNA editing/splicing) in higher eukaryotes to regulate ribosome biogenesis, assembly, and protein translation in a dynamic manner.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1313 ◽  
Author(s):  
Bennison ◽  
Irving ◽  
Corrigan

Many facets of ribosome biogenesis and function, including ribosomal RNA (rRNA) transcription, 70S assembly and protein translation, are negatively impacted upon induction of a nutrient stress-sensing signalling pathway termed the stringent response. This stress response is mediated by the alarmones guanosine tetra- and penta-phosphate ((p)ppGpp), the accumulation of which leads to a massive cellular response that slows growth and aids survival. The 70S bacterial ribosome is an intricate structure, with assembly both complex and highly modular. Presiding over the assembly process is a group of P-loop GTPases within the TRAFAC (Translation Factor Association) superclass that are crucial for correct positioning of both early and late stage ribosomal proteins (r-proteins) onto the rRNA. Often described as ‘molecular switches’, members of this GTPase superfamily readily bind and hydrolyse GTP to GDP in a cyclic manner that alters the propensity of the GTPase to carry out a function. TRAFAC GTPases are considered to act as checkpoints to ribosome assembly, involved in binding to immature sections in the GTP-bound state, preventing further r-protein association until maturation is complete. Here we review our current understanding of the impact of the stringent response and (p)ppGpp production on ribosome maturation in prokaryotic cells, focusing on the inhibition of (p)ppGpp on GTPase-mediated subunit assembly, but also touching upon the inhibition of rRNA transcription and protein translation.


Sign in / Sign up

Export Citation Format

Share Document