repressor proteins
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 22)

H-INDEX

32
(FIVE YEARS 3)

mSphere ◽  
2021 ◽  
Author(s):  
Bernardo Ramírez-Zavala ◽  
Austin Mottola ◽  
Ines Krüger ◽  
Joachim Morschhäuser

The highly conserved protein kinase SNF1 plays a key role in the metabolic adaptation of the pathogenic yeast Candida albicans , but it is not clear how it regulates its downstream targets in this fungus. We show that the repressor proteins Mig1 and Mig2 are phosphorylated also in cells lacking the catalytic α-subunit Snf1 of the SNF1 complex, but the amounts of both proteins were reduced in wild-type cells when glucose was replaced by alternative carbon sources, pointing to an indirect mechanism of regulation.


Author(s):  
M. Rakshna ◽  
A. S. Arunkumar ◽  
Laya Mahadevan

Coronavirus disease 2019(COVID- 19), the newly discovered infectious disease is caused by an infection with a novel virus belonging to the family Coronaviridae named severe acute respiratory syndrome coronavirus-2(SARS-CoV-2). SARS-CoV-2-infected cells produce substances that can induce injury to lung cells as the focus of initiation of COVID-19 during the incubation period. These substances bind to receptors on the target cells. Corticosteroids bind to specific intracellular cytoplasmic receptors in target tissues.  The receptor hormone recruits co-activator or co-repressor proteins after dimerizing. In severe COVID-19 patients develop a systemic inflammatory response that leads to lung injury and multisystem organ dysfunction. Even though evidence consistently supporting the use of steroids in ARDS and pneumonia is hard to come by the potent anti-inflammatory effects of steroids are postulated to prevent the deleterious effects of the severe inflammation seen in COVID pneumonia. A monoclonal antibody cocktail consisting of Casirivimab and Imdevimab is another promising therapeutic option in patients at high risk of deterioration. Used early in the disease process they prevent hospitalization and further morbidity.


Genetics ◽  
2021 ◽  
Author(s):  
Emily J Parnell ◽  
Timothy J Parnell ◽  
David J Stillman

Abstract The Tup1-Cyc8 corepressor complex of Saccharomyces cerevisiae is recruited to promoters by DNA-binding proteins to repress transcription of genes, including the a-specific mating type genes. We report here a tup1(S649F) mutant that displays mating irregularities and an α-predominant growth defect. RNA-Seq and ChIP-Seq were used to analyze gene expression and Tup1 occupancy changes in mutant vs. wild-type in both a and α cells. Increased Tup1(S649F) occupancy tended to occur upstream of upregulated genes, whereas locations with decreased occupancy usually did not show changes in gene expression, suggesting this mutant not only loses corepressor function but also behaves as a coactivator. Based upon studies demonstrating a dual role of Tup1 in both repression and activation, we postulate that the coactivator function of Tup1(S649F) results from diminished interaction with repressor proteins, including α2. We also found that large changes in mating type-specific gene expression between a and α or between mutant and wild-type were not easily explained by the range of Tup1 occupancy levels within their promoters, as predicted by the classic model of a-specific gene repression by Tup1. Most surprisingly, we observed Tup1 occupancy upstream of the a-specific gene MFA2 and the α-specific gene MF(ALPHA)1 in cells in which each gene was expressed rather than repressed. These results, combined with identification of additional mating related genes upregulated in the tup1(S649F) α strain, illustrate that the role of Tup1 in distinguishing mating types in yeast appears to be both more comprehensive and more nuanced than previously appreciated.


Author(s):  
Biao Deng ◽  
Xuan Wang ◽  
Xing Long ◽  
Ren Fang ◽  
Shuangyun Zhou ◽  
...  

AbstractGibberellin (GA), auxin (IAA) and brassinosteroid (BR) are indispensable in the process of plant growth and development. Currently, research on the regulatory mechanism of phytohormones in banana dwarfism is mainly focused on GA, and few studies are focused on IAA and BR. In this study, we measured the contents of endogenous GA, IAA and BR and compared the transcriptomes of wild-type Williams banana and its dwarf mutant across five successive growth periods. We investigated the relationship between hormones and banana dwarfism and explored differential gene expression through transcriptome analysis, thus revealing the possible metabolic regulatory mechanism. We inferred a complex regulatory network of banana dwarfing. In terms of endogenous hormone levels, GA and IAA had significant effects on banana dwarfing, while BR had little effect. The key gene in GA biosynthesis of is GA2ox, and the key genes in IAA biosynthesis are TDC and YUCCA. The differential expression of these genes might be the main factor affecting hormone levels and plant height. In terms of hormone signal transduction, DELLA and AUX/IAA repressor proteins were the core regulators of GA and IAA, respectively. They inhibited the process of signal transduction and had feedback regulation on hormone levels. Finally, the transporter protein PIN, AUX1/LAX protein family and ABCB subfamily played supplementary roles in the transport of IAA. These results provide new insights into GA and IAA regulation of banana growth and a reliable foundation for the improvement of dwarf varieties.


2021 ◽  
Author(s):  
Emily J Parnell ◽  
Timothy J Parnell ◽  
David J. Stillman

The Tup1-Cyc8 corepressor complex of Saccharomyces cerevisiae is recruited to promoters by DNA-binding proteins to repress transcription of genes, including the a-specific mating type genes. We report here a tup1(S649F) mutant that displays mating irregularities similar to a tup1 null and an -predominant growth defect. RNA-Seq and ChIP-Seq were used to analyze gene expression and Tup1 occupancy changes in mutant vs. wild-type in both a and cells. Increased Tup1(S649F) occupancy tended to occur upstream of upregulated genes, whereas locations with decreased occupancy usually did not show changes in gene expression, suggesting this mutant not only loses corepressor function but also behaves as a coactivator. Based upon studies demonstrating a dual role of Tup1 in both repression and activation, we postulate that the coactivator function of Tup1(S649F) results from diminished interaction with repressor proteins, including 2. We also found that large changes in mating type-specific gene expression between a and or between mutant and wild-type were not easily explained by the range of Tup1 occupancy levels within their promoters, as predicted by the classic model of a-specific gene repression by Tup1. Most surprisingly, we observed Tup1 occupancy upstream of the a-specific gene MFA2 and the -specific gene MF(ALPHA)1 in cells in which each gene was expressed rather than repressed. These results, combined with identification of additional mating related genes upregulated in the tup1(S649F) strain, illustrate that the role of Tup1 in distinguishing mating types in yeast appears to be both more comprehensive and more nuanced than previously appreciated.


Author(s):  
Gabriella Marincola ◽  
Greta Jaschkowitz ◽  
Ann-Katrin Kieninger ◽  
Freya D.R. Wencker ◽  
Andrea T. Feßler ◽  
...  

Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) of clonal complex CC398 typically carry various antimicrobial resistance genes, many of them located on plasmids. In the bovine LA-MRSA isolate Rd11, we previously identified plasmid pAFS11 in which resistance genes are co-localized with a novel ica-like gene cluster, harboring genes required for polysaccharide intercellular adhesin (PIA)-mediated biofilm formation. The ica genes on pAFS11 were acquired in addition to a pre-existing ica locus on the S. aureus Rd11 chromosomal DNA. Both loci consist of an icaADBC operon and icaR, encoding a corresponding icaADBC repressor. Despite carrying two biofilm gene copies, strain Rd11 did not produce PIA and transformation of pAFS11 into another S. aureus strain even slightly diminished PIA-mediated biofilm formation. By focusing on the molecular background of the biofilm-negative phenotype of pAFS11-carrying S. aureus, we identified the pAFS11-borne ica locus copy as functionally fully active. However, transcription of both plasmid- and core genome-derived icaADBC operons were efficiently suppressed involving IcaR. Surprisingly, although being different on the amino acid sequence level, the two IcaR repressor proteins are mutually replaceable and are able to interact with the icaA promoter region of the other copy. We speculate that this regulatory crosstalk causes the biofilm-negative phenotype in S. aureus Rd11. The data shed light on an unexpected regulatory interplay between pre-existing and newly acquired DNA traits in S. aureus. This also raises interesting general questions regarding functional consequences of gene transfer events and their putative implications for the adaptation and evolution of bacterial pathogens.


Development ◽  
2021 ◽  
Vol 148 (6) ◽  
Author(s):  
Alexandra Theis ◽  
Ruth A. Singer ◽  
Diana Garofalo ◽  
Alexander Paul ◽  
Anila Narayana ◽  
...  

ABSTRACT Groucho-related genes (GRGs) are transcriptional co-repressors that are crucial for many developmental processes. Several essential pancreatic transcription factors are capable of interacting with GRGs; however, the in vivo role of GRG-mediated transcriptional repression in pancreas development is still not well understood. In this study, we used complex mouse genetics and transcriptomic analyses to determine that GRG3 is essential for β cell development, and in the absence of Grg3 there is compensatory upregulation of Grg4. Grg3/4 double mutant mice have severe dysregulation of the pancreas gene program with ectopic expression of canonical liver genes and Foxa1, a master regulator of the liver program. Neurod1, an essential β cell transcription factor and predicted target of Foxa1, becomes downregulated in Grg3/4 mutants, resulting in reduced β cell proliferation, hyperglycemia, and early lethality. These findings uncover novel functions of GRG-mediated repression during pancreas development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicholas Treen ◽  
Shunsuke F. Shimobayashi ◽  
Jorine Eeftens ◽  
Clifford P. Brangwynne ◽  
Michael Levine

AbstractRecent studies suggest that transcriptional activators and components of the pre-initiation complex (PIC) form higher order associations—clusters or condensates—at active loci. Considerably less is known about the distribution of repressor proteins responsible for gene silencing. Here, we develop an expression assay in living Ciona embryos that captures the liquid behavior of individual nucleoli undergoing dynamic fusion events. The assay is used to visualize puncta of Hes repressors, along with the Groucho/TLE corepressor. We observe that Hes.a/Gro puncta have the properties of viscous liquid droplets that undergo limited fusion events due to association with DNA. Hes.a mutants that are unable to bind DNA display hallmarks of liquid–liquid phase separation, including dynamic fusions of individual condensates to produce large droplets. We propose that the DNA template serves as a scaffold for the formation of Hes condensates, but limits the spread of transcriptional repressors to unwanted regions of the genome.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Yao ◽  
Song Lin ◽  
Jin Su ◽  
Qianqian Cao ◽  
Yueyue Chen ◽  
...  

AbstractThe transcription factor erythroid 2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF) play a key role in depression. However, the molecular mechanisms underlying the crosstalk between Nrf2 and BDNF in depression remain unclear. We examined whether Nrf2 regulates the transcription of Bdnf by binding to its exon I promoter. Furthermore, the role of Nrf2 and BDNF in the brain regions from mice with depression-like phenotypes was examined. Nrf2 regulated the transcription of Bdnf by binding to its exon I promoter. Activation of Nrf2 by sulforaphane (SFN) showed fast-acting antidepressant-like effects in mice by activating BDNF as well as by inhibiting the expression of its transcriptional repressors (HDAC2, mSin3A, and MeCP2) and revising abnormal synaptic transmission. In contrast, SFN did not affect the protein expression of BDNF and its transcriptional repressor proteins in the medial prefrontal cortex (mPFC) and hippocampus, nor did it reduce depression-like behaviors and abnormal synaptic transmission in Nrf2 knockout mice. In the mouse model of chronic social defeat stress (CSDS), protein levels of Nrf2 and BDNF in the mPFC and hippocampus were lower than those of control and CSDS-resilient mice. In contrast, the protein levels of BDNF transcriptional repressors in the CSDS-susceptible mice were higher than those of control and CSDS-resilient mice. These data suggest that Nrf2 activation increases the expression of Bdnf and decreases the expression of its transcriptional repressors, which result in fast-acting antidepressant-like actions. Furthermore, abnormalities in crosstalk between Nrf2 and BDNF may contribute to the resilience versus susceptibility of mice against CSDS.


Author(s):  
Deborah Cook ◽  
Jordan Carrington ◽  
Kevin Johnson ◽  
Janelle Hare

The multi-drug resistant pathogen <i>Acinetobacter baumannii</i> displays unusual control of its SOS mutagenesis genes, as it does not encode a LexA repressor, but instead employs the UmuDAb repressor and a small DdrR protein that is uniquely found in <i>Acinetobacter</i> species. We used bacterial adenylate cyclase two-hybrid analyses to determine if UmuDAb and DdrR coregulation might involve physical interactions. Neither quantitative nor qualitative assays showed UmuDAb interaction with DdrR. DdrR hybrid proteins, however, demonstrated modest head-to-tail interactions in a qualitative assay. The similarity of UmuDAb to the homodimer-forming polymerase manager UmuD and LexA repressor proteins suggested that it may form dimers, which we observed. UmuDAb homodimerization required a free C-terminus, and either small truncations or addition of a histidine tag at the C-terminus abolished this homodimerization. Amino acid N100, crucial for UmuD dimer formation, was dispensable if both C-termini were free to interact. However, mutation of G124, necessary for LexA dimerization, yielded significantly less UmuDAb dimerization, even if both C-termini were free. This suggests that UmuDAb forms dimers like LexA, but may not co-regulate gene expression involving a physical association with DdrR. The homodimerization of these coregulators provides insight into a LexA-independent, coregulatory process of controlling a conserved bacterial action such as the mutagenic DNA damage response.


Sign in / Sign up

Export Citation Format

Share Document