scholarly journals Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Yi Zheng ◽  
Meng-Wei Zhuang ◽  
Lulu Han ◽  
Jing Zhang ◽  
Mei-Ling Nan ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism by which SARS-CoV-2 evades antiviral immunity remains elusive. Here, we reported that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway mediated by RIG-I/MDA-5–MAVS signaling. In addition, the SARS-CoV-2 M protein suppresses type I and III IFN induction stimulated by SeV infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1, thus preventing the formation of the multiprotein complex containing RIG-I, MAVS, TRAF3, and TBK1 and subsequently impeding the phosphorylation, nuclear translocation, and activation of IRF3. Consequently, ectopic expression of the SARS-CoV-2 M protein facilitates the replication of vesicular stomatitis virus. Taken together, these results indicate that the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of SARS-CoV-2-induced antiviral immune suppression and illuminates the pathogenic mechanism of COVID-19.

2020 ◽  
Author(s):  
Yi Zheng ◽  
Meng-Wei Zhuang ◽  
Lulu Han ◽  
Jing Zhang ◽  
Mei-Ling Nan ◽  
...  

AbstractThe coronavirus disease 2019 (COVID-19) caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has quickly spread worldwide and has infected more than ten million individuals. One of the typical features of COVID-19 is that both type I and III interferon (IFN)-mediated antiviral immunity are suppressed. However, the molecular mechanism by which SARS-CoV-2 evades this antiviral immunity remains elusive. Here, we report that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway of RIG-I/MDA-5-MAVS signaling. The SARS-CoV2 M protein also dampens type I and III IFN induction stimulated by Sendai virus infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1 and prevents the formation of a multi-protein complex containing RIG-I, MAVS, TRAF3, and TBK1, thus impeding IRF3 phosphorylation, nuclear translocation, and activation. Consequently, the ectopic expression of the SARS-CoV2 M protein facilitates the replication of vesicular stomatitis virus (VSV). Taken together, the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of the SARS-CoV-2-induced antiviral immune suppression and sheds light on the pathogenic mechanism of COVID-19.


Author(s):  
Qi Zhang ◽  
Zhiqiang Chen ◽  
Chenxiao Huang ◽  
Jiuyuan Sun ◽  
Minfei Xue ◽  
...  

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide and has infected more than 250 million people. A typical feature of COVID-19 is the lack of type I interferon (IFN-I)-mediated antiviral immunity in patients. However, the detailed molecular mechanisms by which SARS-CoV-2 evades the IFN-I-mediated antiviral response remain elusive. Here, we performed a comprehensive screening and identified a set of SARS-CoV-2 proteins that antagonize the IFN-I response. Subsequently, we characterized the mechanisms of two viral proteins antagonize IFN-I production and downstream signaling. SARS-CoV-2 membrane protein binds to importin karyopherin subunit alpha-6 (KPNA6) to inhibit interferon regulatory factor 3(IRF3) nuclear translocation. Further, the spike protein interacts with signal transducer and activator of transcription 1 (STAT1) to block its association with Janus kinase 1 (JAK1). This study increases our understanding of SARS-CoV-2 pathogenesis and suggests novel therapeutic targets for the treatment of COVID-19.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liyan Sui ◽  
Yinghua Zhao ◽  
Wenfang Wang ◽  
Ping Wu ◽  
Zedong Wang ◽  
...  

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of current COVID-19 pandemic, and insufficient production of type I interferon (IFN-I) is associated with the severe forms of the disease. Membrane (M) protein of SARS-CoV-2 has been reported to suppress host IFN-I production, but the underlying mechanism is not completely understood. In this study, SARS-CoV-2 M protein was confirmed to suppress the expression of IFNβ and interferon-stimulated genes induced by RIG-I, MDA5, IKKϵ, and TBK1, and to inhibit IRF3 phosphorylation and dimerization caused by TBK1. SARS-CoV-2 M could interact with MDA5, TRAF3, IKKϵ, and TBK1, and induce TBK1 degradation via K48-linked ubiquitination. The reduced TBK1 further impaired the formation of TRAF3–TANK–TBK1-IKKε complex that leads to inhibition of IFN-I production. Our study revealed a novel mechanism of SARS-CoV-2 M for negative regulation of IFN-I production, which would provide deeper insight into the innate immunosuppression and pathogenicity of SARS-CoV-2.


2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Zongyi Bo ◽  
Yurun Miao ◽  
Rui Xi ◽  
Qiuping Zhong ◽  
Chenyi Bao ◽  
...  

Abstract Cyclic GMP-AMP (cGAMP) synthase (cGAS) is an intracellular sensor of cytoplasmic viral DNA created during virus infection, which subsequently activates the stimulator of interferon gene (STING)-dependent type I interferon response to eliminate pathogens. In contrast, viruses have developed different strategies to modulate this signalling pathway. Pseudorabies virus (PRV), an alphaherpesvirus, is the causative agent of Aujeszky’s disease (AD), a notable disease that causes substantial economic loss to the swine industry globally. Previous reports have shown that PRV infection induces cGAS-dependent IFN-β production, conversely hydrolysing cGAMP, a second messenger synthesized by cGAS, and attenuates PRV-induced IRF3 activation and IFN-β secretion. However, it is not clear whether PRV open reading frames (ORFs) modulate the cGAS–STING-IRF3 pathway. Here, 50 PRV ORFs were screened, showing that PRV UL13 serine/threonine kinase blocks the cGAS–STING-IRF3-, poly(I:C)- or VSV-mediated transcriptional activation of the IFN-β gene. Importantly, it was discovered that UL13 phosphorylates IRF3, and its kinase activity is indispensable for such an inhibitory effect. Moreover, UL13 does not affect IRF3 dimerization, nuclear translocation or association with CREB-binding protein (CBP) but attenuates the binding of IRF3 to the IRF3-responsive promoter. Consistent with this, it was discovered that UL13 inhibits the expression of multiple interferon-stimulated genes (ISGs) induced by cGAS–STING or poly(I:C). Finally, it was determined that PRV infection can activate IRF3 by recruiting it to the nucleus, and PRVΔUL13 mutants enhance the transactivation level of the IFN-β gene. Taken together, the data from the present study demonstrated that PRV UL13 inhibits cGAS–STING-mediated IFN-β production by phosphorylating IRF3.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 530
Author(s):  
Soo Jin Oh ◽  
Ok Sarah Shin

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) that has resulted in the current pandemic. The lack of highly efficacious antiviral drugs that can manage this ongoing global emergency gives urgency to establishing a comprehensive understanding of the molecular pathogenesis of SARS-CoV-2. We characterized the role of the nucleocapsid protein (N) of SARS-CoV-2 in modulating antiviral immunity. Overexpression of SARS-CoV-2 N resulted in the attenuation of retinoic acid inducible gene-I (RIG-I)-like receptor-mediated interferon (IFN) production and IFN-induced gene expression. Similar to the SARS-CoV-1 N protein, SARS-CoV-2 N suppressed the interaction between tripartate motif protein 25 (TRIM25) and RIG-I. Furthermore, SARS-CoV-2 N inhibited polyinosinic: polycytidylic acid [poly(I:C)]-mediated IFN signaling at the level of Tank-binding kinase 1 (TBK1) and interfered with the association between TBK1 and interferon regulatory factor 3 (IRF3), subsequently preventing the nuclear translocation of IRF3. We further found that both type I and III IFN production induced by either the influenza virus lacking the nonstructural protein 1 or the Zika virus were suppressed by the SARS-CoV-2 N protein. Our findings provide insights into the molecular function of the SARS-CoV-2 N protein with respect to counteracting the host antiviral immune response.


2021 ◽  
Author(s):  
Lauren A. Todd ◽  
Maxwell P. Bui-Marinos ◽  
Barbara A. Katzenback

Epigenetic regulators such as microRNAs are emerging as conserved regulators of innate antiviral immunity in vertebrates, yet their roles in amphibian antiviral responses remain uncharacterized. We profiled changes in microRNA expressions in the Xenopus laevis skin epithelial–like cell line Xela DS2 in response to poly(I:C) – an analogue of double-stranded viral RNA and inducer of type I interferons – or frog virus 3 (FV3), an immunoevasive virus associated with amphibian mortality events. We sequenced small RNA libraries generated from untreated, poly(I:C)–treated, and FV3–infected cells. We detected 136 known X. laevis microRNAs and discovered 133 novel X. laevis microRNAs. Sixty–five microRNAs were differentially expressed in response to poly(I:C), many of which were predicted to target regulators of antiviral pathways such as cGAS–STING, RIG–I/MDA–5, TLR signaling, and type I interferon signaling, as well as products of these pathways (NF–κB–induced and interferon-stimulated genes). In contrast, only 49 microRNAs were altered by FV3 infection, fewer of which were predicted to interact with antiviral pathways. Interestingly, poly(I:C) treatment or FV3 infection downregulated transcripts encoding factors of the host microRNA biogenesis pathway. Our study is the first to suggest that host microRNAs regulate innate antiviral immunity in frogs, and sheds light on microRNA–mediated mechanisms of immunoevasion by FV3.


2020 ◽  
Vol 217 (7) ◽  
Author(s):  
Qingchen Zhu ◽  
Tao Yu ◽  
Shucheng Gan ◽  
Yan Wang ◽  
Yifei Pei ◽  
...  

Ubiquitination is an essential mechanism in the control of antiviral immunity upon virus infection. Here, we identify a series of ubiquitination-modulating enzymes that are modulated by vesicular stomatitis virus (VSV). Notably, TRIM24 is down-regulated through direct transcriptional suppression induced by VSV-activated IRF3. Reducing or ablating TRIM24 compromises type I IFN (IFN-I) induction upon RNA virus infection and thus renders mice more sensitive to VSV infection. Mechanistically, VSV infection induces abundant TRIM24 translocation to mitochondria, where TRIM24 binds with TRAF3 and directly mediates K63-linked TRAF3 ubiquitination at K429/K436. This modification of TRAF3 enables its association with MAVS and TBK1, which consequently activates downstream antiviral signaling. Together, these findings establish TRIM24 as a critical positive regulator in controlling the activation of antiviral signaling and describe a previously unknown mechanism of TRIM24 function.


mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi Wang ◽  
Li Liu

ABSTRACT Most of the intracellular pattern recognition receptors (PRRs) reside in either the endolysosome or the cytoplasm to sense pathogen-derived RNAs, DNAs, or synthetic analogs of double-stranded RNA (dsRNA), such as poly(I:C). However, it remains elusive whether or not a pathogen-derived protein can function as a cytosolic pathogen-associated molecular pattern (PAMP). In this study, we demonstrate that delivering the membrane gene of severe acute respiratory syndrome coronavirus (SARS-CoV) into HEK293T, HEK293ET, and immobilized murine bone marrow-derived macrophage (J2-Mφ) cells significantly upregulates beta interferon (IFN-β) production. Both NF-κB and TBK1-IRF3 signaling cascades are activated by M gene products. M protein rather than M mRNA is responsible for M-mediated IFN-β induction that is preferentially associated with the activation of the Toll-like receptor (TLR) adaptor proteins MyD88, TIRAP, and TICAM2 but not the RIG-I signaling cascade. Blocking the secretion of M protein by brefeldin A (BFA) failed to reverse the M-mediated IFN-β induction. The antagonist of both TLR2 and TLR4 did not impede M-mediated IFN-β induction, indicating that the driving force for the activation of IFN-β production was generated from inside the cells. Inhibition of TRAF3 expression by specific small interfering RNA (siRNA) did not prevent M-mediated IFN-β induction. SARS-CoV pseudovirus could induce IFN-β production in an M rather than M(V68A) dependent manner, since the valine-to-alanine alteration at residue 68 in M protein markedly inhibited IFN-β production. Overall, our study indicates for the first time that a pathogen-derived protein is able to function as a cytosolic PAMP to stimulate type I interferon production by activating a noncanonical TLR signaling cascade in a TRAF3-independent manner. IMPORTANCE Viral protein can serve as a pathogen-associated molecular pattern (PAMP) that is usually recognized by certain pathogen recognition receptors (PRRs) on the cell surface, such as Toll-like receptor 2 (TLR2) and TLR4. In this study, we demonstrate that the membrane (M) protein of SARS-CoV can directly promote the activation of both beta interferon (IFN-β) and NF-κB through a TLR-related signaling pathway independent of TRAF3. The driving force for M-mediated IFN-β production is most likely generated from inside the cells. M-mediated IFN-β induction was confirmed at the viral infection level since a point mutation at the V68 residue of M markedly inhibited SARS-CoV pseudovirally induced IFN-β production. Thus, the results indicate for the first time that SARS-CoV M protein may function as a cytosolic PAMP to stimulate IFN-β production by activating a TLR-related TRAF3-independent signaling cascade.


Author(s):  
Lulu Han ◽  
Meng-Wei Zhuang ◽  
Yi Zheng ◽  
Jing Zhang ◽  
Mei-Ling Nan ◽  
...  

AbstractSevere acute respiratory syndrome corona-virus 2 (SARS-CoV-2), the etiologic agent of the coronavirus disease 2019 (COVID-19), has a catastrophic effect on human health and society. Clinical findings indicated that the suppression of innate antiviral immunity, especially the type I and III interferon (IFN) production, contributes to the pathogenesis of COVID-19. However, how SARS-CoV-2 evades antiviral immunity still needs further investigations. Here, we reported that the open reading frame 9b (ORF9b) protein encoded by the SARS-CoV-2 genome inhibits the activation of type I and III IFN response by targeting multiple molecules of innate antiviral signaling pathways. SARS-CoV-2 ORF9b impaired the induction of type I and III IFNs by Sendai virus or the dsRNA mimic poly (I:C). SARS-CoV-2 ORF9b inhibits the activation of type I and III IFNs induced by the components of cytosolic dsRNA-sensing pathways of RIG-I/MDA5-MAVS signaling, including RIG-I, MDA-5, MAVS, TBK1, and IKKε rather than IRF3-5D, the active form of IRF3. SARS-CoV-2 ORF9b also suppressed the induction of type I and III IFNs by TRIF and STING, the adaptor protein of endosome RNA-sensing pathway of TLR3-TRIF signaling and the adaptor protein of cytosolic DNA-sensing pathway of cGAS-STING signaling, respectively. Mechanistically, SARS-CoV-2 ORF9b protein interacts with RIG-I, MDA-5, MAVS, TRIF, STING, TBK1, and prevents TBK1 phosphorylation, thus impeding the phosphorylation and nuclear trans-localization of IRF3 activation. Overexpression of SARS-CoV-2 ORF9b facilitates the replication of the vesicular stomatitis virus. Therefore, SARS-CoV-2 ORF9b negatively regulates antiviral immunity, thus, facilitate virus replication. This study contributes to our understanding of the molecular mechanism of how SARS-CoV-2 impaired antiviral immunity and providing an essential clue to the pathogenesis of COVID-19.


FACETS ◽  
2021 ◽  
Vol 6 ◽  
pp. 2058-2083
Author(s):  
Lauren A. Todd ◽  
Maxwell P. Bui-Marinos ◽  
Barbara A. Katzenback

Post-transcriptional regulators such as microRNAs are emerging as conserved regulators of innate antiviral immunity in vertebrates, yet their roles in amphibian antiviral responses remain uncharacterized. We profiled changes in microRNA expressions in the Xenopus laevis skin epithelial-like cell line Xela DS2 in response to poly(I:C)—an analogue of viral double-stranded RNA and inducer of type I interferons—or frog virus 3 (FV3), an immunoevasive virus associated with amphibian mortality events. Small RNA libraries generated from untreated, poly(I:C)-treated, and FV3-infected cells were sequenced. We detected 136 known X. laevis microRNAs and discovered 133 novel X. laevis microRNAs. Sixty-five microRNAs were differentially expressed in response to poly(I:C), many of which were predicted to target regulators of antiviral pathways such as cGAS-STING, RIG-I/MDA-5, TLR signaling, and type I interferon signaling, as well as products of these pathways (NF-ĸB-induced and interferon-stimulated genes). In contrast, only 49 microRNAs were altered by FV3 infection, fewer of which were predicted to interact with antiviral pathways. Interestingly, poly(I:C) treatment or FV3 infection downregulated transcripts encoding factors of the host microRNA biogenesis pathway. Our study is the first to suggest that host microRNAs regulate innate antiviral immunity in frogs and sheds light on microRNA-mediated mechanisms of immunoevasion by FV3.


Sign in / Sign up

Export Citation Format

Share Document