scholarly journals Drug repurposing for Alzheimer’s disease based on transcriptional profiling of human iPSC-derived cortical neurons

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Gareth Williams ◽  
Ariana Gatt ◽  
Earl Clarke ◽  
Jonathan Corcoran ◽  
Patrick Doherty ◽  
...  
2020 ◽  
Author(s):  
Carlos J Nogueras-Ortiz ◽  
Vasiliki Mahairaki ◽  
Francheska Delgado-Peraza ◽  
Debamitra Das ◽  
Konstantinos Avgerinos ◽  
...  

AbstractWe have previously shown that blood astrocytic-origin extracellular vesicles (AEVs) from Alzheimer’s disease (AD) patients contain high complement levels. To test the hypothesis that circulating EVs from AD patients can induce complement-mediated neurodegeneration, we assessed the neurotoxicity of immunocaptured AEVs (with anti-GLAST antibody), neuronal-origin NEVs (with anti-L1CAM antibody), and multicellular-origin (with anti-CD81 antibody) EVs from the plasma of AD, frontotemporal lobar degeneration (FTLD) and control participants. AEVs (and, less effectively, NEVs) of AD participants induced Membrane Attack Complex (MAC) expression on recipient neurons, membrane disruption, reduced neurite density, and decreased cell viability in rat cortical neurons and human IPSC-derived neurons. Neurodegenerative effects were not produced by multicellular-origin EVs from AD participants or AEVs/NEVs from FTLD or control participants, and were suppressed by the MAC inhibitor CD59 and other complement inhibitors. Our results support the stated hypothesis and suggest that neuronal MAC deposition is necessary for AEV/NEV-mediated neurodegeneration in AD.


Author(s):  
Tanay Dalvi ◽  
Bhaskar Dewangan ◽  
Rudradip Das ◽  
Jyoti Rani ◽  
Suchita Dattatray Shinde ◽  
...  

: The most common reason behind dementia is Alzheimer’s disease (AD) and it is predicted to be the third lifethreatening disease apart from stroke and cancer for the geriatric population. Till now only four drugs are available in the market for symptomatic relief. The complex nature of disease pathophysiology and lack of concrete evidences of molecular targets are the major hurdles for developing new drug to treat AD. The the rate of attrition of many advanced drugs at clinical stages, makes the de novo discovery process very expensive. Alternatively, Drug Repurposing (DR) is an attractive tool to develop drugs for AD in a less tedious and economic way. Therefore, continuous efforts are being made to develop a new drug for AD by repursing old drugs through screening and data mining. For example, the survey in the drug pipeline for Phase III clinical trials (till February 2019) which has 27 candidates, and around half of the number are drugs which have already been approved for other indications. Although in the past the drug repurposing process for AD has been reviewed in the context of disease areas, molecular targets, there is no systematic review of repurposed drugs for AD from the recent drug development pipeline (2019-2020). In this manuscript, we are reviewing the clinical candidates for AD with emphasis on their development history including molecular targets and the relevance of the target for AD.


2020 ◽  
Author(s):  
Fang Li ◽  
Muhammad "Tuan" Amith ◽  
Grace Xiong ◽  
Jingcheng Du ◽  
Yang Xiang ◽  
...  

BACKGROUND Alzheimer’s Disease (AD) is a devastating neurodegenerative disease, of which the pathophysiology is insufficiently understood, and the curative drugs are long-awaited to be developed. Computational drug repurposing introduces a promising complementary strategy of drug discovery, which benefits from an accelerated development process and decreased failure rate. However, generating new hypotheses in AD drug repurposing requires multi-dimensional and multi-disciplinary data integration and connection, posing a great challenge in the era of big data. By integrating data with computable semantics, ontologies could infer unknown relationships through automated reasoning and fulfill an essential role in supporting computational drug repurposing. OBJECTIVE The study aimed to systematically design a robust Drug Repurposing-Oriented Alzheimer’s Disease Ontology (DROADO), which could model fundamental elements and their relationships involved in AD drug repurposing and integrate their up-to-date research advance comprehensively. METHODS We devised a core knowledge model of computational AD drug repurposing, based on both pre-genomic and post-genomic research paradigms. The model centered on the possible AD pathophysiology and abstracted the essential elements and their relationships. We adopted a hybrid strategy to populate the ontology (classes and properties), including importing from well-curated databases, extracting from high-quality papers and reusing the existing ontologies. We also leveraged n-ary relations and nanopublication graphs to enrich the object relations, making the knowledge stored in the ontology more powerful in supporting computational processing. The initially built ontology was evaluated by a semiotic-driven and web-based tool Ontokeeper. RESULTS The current version of DROADO was composed of 1,021 classes, 23 object properties and 3,207 axioms, depicting a fundamental network related to computational neuroscience concepts and relationships. Assessment using semiotic evaluation metrics by OntoKeeper indicated sufficient preliminary quality (semantics, usefulness and community-consensus) of the ontology. CONCLUSIONS As an in-depth knowledge base, DROADO would be promising in enabling computational algorithms to realize supervised mining from multi-source data, and ultimately, facilitating the discovery of novel AD drug targets and the realization of AD drug repurposing.


Author(s):  
Damián Hernández ◽  
Louise A. Rooney ◽  
Maciej Daniszewski ◽  
Lerna Gulluyan ◽  
Helena H. Liang ◽  
...  

2017 ◽  
Vol 13 (7S_Part_21) ◽  
pp. P999-P1000
Author(s):  
Minna Oksanen ◽  
Andrew J. Petersen ◽  
Katja Puttonen ◽  
Riikka H. Hämäläinen ◽  
Šárka Lehtonen ◽  
...  

2021 ◽  
Vol 10 (8) ◽  
pp. 1555
Author(s):  
Ágoston Patthy ◽  
János Murai ◽  
János Hanics ◽  
Anna Pintér ◽  
Péter Zahola ◽  
...  

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder as yet without effective therapy. Symptoms of this disorder typically reflect cortical malfunction with local neurohistopathology, which biased investigators to search for focal triggers and molecular mechanisms. Cortex, however, receives massive afferents from caudal brain structures, which do not only convey specific information but powerfully tune ensemble activity. Moreover, there is evidence that the start of AD is subcortical. The brainstem harbors monoamine systems, which establish a dense innervation in both allo- and neocortex. Monoaminergic synapses can co-release neuropeptides either by precisely terminating on cortical neurons or, when being “en passant”, can instigate local volume transmission. Especially due to its early damage, malfunction of the ascending monoaminergic system emerges as an early sign and possible trigger of AD. This review summarizes the involvement and cascaded impairment of brainstem monoaminergic neurons in AD and discusses cellular mechanisms that lead to their dysfunction. We highlight the significance and therapeutic challenges of transmitter co-release in ascending activating system, describe the role and changes of local connections and distant afferents of brainstem nuclei in AD, and summon the rapidly increasing diagnostic window during the last few years.


2021 ◽  
Vol 53 ◽  
pp. 102378
Author(s):  
Jan Raska ◽  
Hana Klimova ◽  
Katerina Sheardova ◽  
Veronika Fedorova ◽  
Hana Hribkova ◽  
...  

1989 ◽  
Vol 14 (4) ◽  
pp. 353-358 ◽  
Author(s):  
H. Akiyama ◽  
P. L. McGeer ◽  
S. Itagaki ◽  
E. G. McGeer ◽  
T. Kaneko

Sign in / Sign up

Export Citation Format

Share Document