scholarly journals Exome-wide age-of-onset analysis reveals exonic variants in ERN1 and SPPL2C associated with Alzheimer’s disease

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liang He ◽  
◽  
Yury Loika ◽  
Yongjin Park ◽  
David A. Bennett ◽  
...  

AbstractDespite recent discoveries in genome-wide association studies (GWAS) of genomic variants associated with Alzheimer’s disease (AD), its underlying biological mechanisms are still elusive. The discovery of novel AD-associated genetic variants, particularly in coding regions and from APOEε4 non-carriers, is critical for understanding the pathology of AD. In this study, we carried out an exome-wide association analysis of age-of-onset of AD with ~20,000 subjects and placed more emphasis on APOEε4 non-carriers. Using Cox mixed-effects models, we find that age-of-onset shows a stronger genetic signal than AD case-control status, capturing many known variants with stronger significance, and also revealing new variants. We identified two novel variants, rs56201815, a rare synonymous variant in ERN1, and rs12373123, a common missense variant in SPPL2C in the MAPT region in APOEε4 non-carriers. Besides, a rare missense variant rs144292455 in TACR3 showed the consistent direction of effect sizes across all studies with a suggestive significant level. In an attempt to unravel their regulatory and biological functions, we found that the minor allele of rs56201815 was associated with lower average FDG uptake across five brain regions in ADNI. Our eQTL analyses based on 6198 gene expression samples from ROSMAP and GTEx revealed that the minor allele of rs56201815 was potentially associated with elevated expression of ERN1, a key gene triggering unfolded protein response (UPR), in multiple brain regions, including the posterior cingulate cortex and nucleus accumbens. Our cell-type-specific eQTL analysis using ~80,000 single nuclei in the prefrontal cortex revealed that the protective minor allele of rs12373123 significantly increased the expression of GRN in microglia, and was associated with MAPT expression in astrocytes. These findings provide novel evidence supporting the hypothesis of the potential involvement of the UPR to ER stress in the pathological pathway of AD, and also give more insights into underlying regulatory mechanisms behind the pleiotropic effects of rs12373123 in multiple degenerative diseases including AD and Parkinson’s disease.

2020 ◽  
Author(s):  
Liang He ◽  
Yury Loika ◽  
Yongjin Park ◽  
David A. Bennett ◽  
Manolis Kellis ◽  
...  

AbstractDespite recent discovery in GWAS of genomic variants associated with Alzheimer’s disease (AD), its underlying biological mechanisms are still elusive. Discovery of novel AD-associated genetic variants, particularly in coding regions and from APOE ε4 non-carriers, is critical for understanding the pathology of AD. In this study, we carried out an exome-wide association analysis of age-of-onset of AD with ~20,000 subjects and placed more emphasis on APOE ε4 non-carriers. Using Cox mixed-effects models, we find that age-of-onset shows a stronger genetic signal than AD case-control status, capturing many known variants with stronger significance, and also revealing new variants. We identified two novel rare variants, rs56201815, a synonymous variant in ERN1, from the analysis of APOE ε4 non-carriers, and a missense variant rs144292455 in TACR3. In addition, we detected rs12373123, a common missense variant in SPPL2C in the MAPT region in APOE ε4 non-carriers. In an attempt to unravel their regulatory and biological functions, we found that the minor allele of rs56201815 was associated with lower average FDG uptake across five brain regions in ADNI. Our eQTL analyses based on 6198 gene expression samples from ROSMAP and GTEx revealed that the minor allele of rs56201815 was associated with elevated expression of ERN1, a key gene triggering unfolded protein response (UPR), in multiple brain regions, including posterior cingulate cortex and nucleus accumbens. Our cell-type-specific eQTL analysis of based on ~80,000 single nuclei in the prefrontal cortex revealed that the protective minor allele of rs12373123 significantly increased expression of GRN in microglia, and was associated with MAPT expression in astrocytes. These findings provide novel evidence supporting the hypothesis of the potential involvement of the UPR to ER stress in the pathological pathway of AD, and also give more insights into underlying regulatory mechanisms behind the pleiotropic effects of rs12373123 in multiple degenerative diseases including AD and Parkinson’s disease.


2021 ◽  
Vol 13 ◽  
Author(s):  
David Vogrinc ◽  
Katja Goričar ◽  
Vita Dolžan

Alzheimer's disease (AD) is a complex neurodegenerative disease, affecting a significant part of the population. The majority of AD cases occur in the elderly with a typical age of onset of the disease above 65 years. AD presents a major burden for the healthcare system and since population is rapidly aging, the burden of the disease will increase in the future. However, no effective drug treatment for a full-blown disease has been developed to date. The genetic background of AD is extensively studied; numerous genome-wide association studies (GWAS) identified significant genes associated with increased risk of AD development. This review summarizes more than 100 risk loci. Many of them may serve as biomarkers of AD progression, even in the preclinical stage of the disease. Furthermore, we used GWAS data to identify key pathways of AD pathogenesis: cellular processes, metabolic processes, biological regulation, localization, transport, regulation of cellular processes, and neurological system processes. Gene clustering into molecular pathways can provide background for identification of novel molecular targets and may support the development of tailored and personalized treatment of AD.


2021 ◽  
Author(s):  
Billie J. Matchett ◽  
Sarah J. Lincoln ◽  
Matt Baker ◽  
Nikoleta Tamvaka ◽  
Janisse Cabrera-Rodriguez ◽  
...  

Abstract Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is the most common cause of dementia. Our previous studies have shown that increased expression of the SERPINA5 gene is associated with hippocampal vulnerability in AD, and that the SERPINA5 protein binds to tau and co-localizes within neurofibrillary tangles. To determine if genetic variants in the SERPINA5 gene may be contributing to this phenotype, we sequenced 103 autopsy-confirmed young-onset AD cases with a positive family history of cognitive decline. We observed one individual with a rare missense variant (rs140138746) in the SERPINA5 gene, resulting in an amino acid change (p.E228Q). We screened a further 1170 neuropathologically diagnosed AD cases and identified an additional 5 carriers of this variant, resulting in an allelic frequency of 0.002141 within our AD validation cohort, which was comparable to online genomic databases. Although not significant, SERPINA5 p.E228Q variant carriers were found to be younger at age of onset and age of death than non-carriers. SERPINA5 p.E228Q variant carriers had a longer disease duration than non-carriers, which approached significance. To further elucidate possible neuropathologic contributions of the SERPINA5 p.E228Q variant, we carried out descriptive neuropathologic burden analysis on a variant carrier that was matched to a non-carrier for age, sex, disease duration, Braak tangle stage, TDP-43 positive status, and who possessed an APOE ε4 risk allele. Interestingly, SERPINA5 burden was lower in the SERPINA5 p.E228Q carrier than the non-carrier in 9 corticolimbic brain regions studied, which exaggerated the tau:SERPINA5 immunohistochemical ratio. The SERPINA5 p.E228Q carrier was observed to have more severe neuronal loss in several brain regions compared to the non-carrier. Together, we cautiously interpret these findings to suggest that the SERPINA5 p.E228Q variant may stall tangle maturity and slow AD disease progression, thus prolonging disease duration in these individuals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Young Park ◽  
Dongsoo Lee ◽  
Jang Jae Lee ◽  
Jungsoo Gim ◽  
Tamil Iniyan Gunasekaran ◽  
...  

AbstractEstablished genetic risk factors for Alzheimer’s disease (AD) account for only a portion of AD heritability. The aim of this study was to identify novel associations between genetic variants and AD-specific brain atrophy. We conducted genome-wide association studies for brain magnetic resonance imaging measures of hippocampal volume and entorhinal cortical thickness in 2643 Koreans meeting the clinical criteria for AD (n = 209), mild cognitive impairment (n = 1449) or normal cognition (n = 985). A missense variant, rs77359862 (R274W), in the SHANK-associated RH Domain Interactor (SHARPIN) gene was associated with entorhinal cortical thickness (p = 5.0 × 10−9) and hippocampal volume (p = 5.1 × 10−12). It revealed an increased risk of developing AD in the mediation analyses. This variant was also associated with amyloid-β accumulation (p = 0.03) and measures of memory (p = 1.0 × 10−4) and executive function (p = 0.04). We also found significant association of other SHARPIN variants with hippocampal volume in the Alzheimer’s Disease Neuroimaging Initiative (rs3417062, p = 4.1 × 10−6) and AddNeuroMed (rs138412600, p = 5.9 × 10−5) cohorts. Further, molecular dynamics simulations and co-immunoprecipitation indicated that the variant significantly reduced the binding of linear ubiquitination assembly complex proteins, SHPARIN and HOIL-1 Interacting Protein (HOIP), altering the downstream NF-κB signaling pathway. These findings suggest that SHARPIN plays an important role in the pathogenesis of AD.


2018 ◽  
Author(s):  
Inken Wohlers ◽  
Colin Schulz ◽  
Fabian Kilpert ◽  
Lars Bertram

AbstractThe role of microRNAs (miRNAs) in the pathogenesis of Alzheimer’s disease (AD) is currently extensively investigated. In this study, we assessed the potential impact of AD genetic risk variants on miRNA expression by performing large-scale bioinformatic data integration. Our analysis was based on genetic variants from three AD genome-wide association studies (GWAS). Association with miRNA expression was tested by expression quantitative trait loci (eQTL) analysis using next-generation miRNA sequencing data generated in lymphoblastoid cell lines (LCL). While, overall, we did not identify a strong effect of AD GWAS variants on miRNA expression in this cell type we highlight two notable outliers, i.e. miR-29c-5p and miR-6840-5p. MiR-29c-5p was recently reported to be involved in the regulation of BACE1 and SORL1 expression. In conclusion, despite two exceptions our large-scale assessment provides only limited support for the hypothesis that AD GWAS variants act as miRNA eQTLs.


2019 ◽  
Author(s):  
Samuel Morabito ◽  
Emily Miyoshi ◽  
Neethu Michael ◽  
Vivek Swarup

AbstractAlzheimer’s disease (AD) is a devastating neurological disorder characterized by changes in cell-type proportions and consequently marked alterations of the transcriptome. Here we use a data-driven systems biology approach across multiple cohorts of human AD, encompassing different brain regions, and integrate with multi-scale datasets comprising of DNA methylation, histone acetylation, transcriptome- and genome-wide association studies as well as quantitative trait loci to define the genetic architecture of AD. We perform co-expression network analysis across more than twelve hundred human brain samples, identifying robust AD-associated dysregulation of the transcriptome, unaltered in normal human aging. We further integrate co-expression modules with single-cell transcriptome generated from 27,321 nuclei from postmortem human brain to identify AD-specific transcriptional changes and assess cell-type proportion changes in the human AD brain. We also show that genetic variants of AD are enriched in a glial AD-associated module and identify key transcription factors regulating co-expressed modules. Additionally, we validate our results in multiple published human AD datasets which are easily accessible using our online resource (https://swaruplab.bio.uci.edu/consensusAD).


2020 ◽  
Vol 29 (17) ◽  
pp. 2899-2919
Author(s):  
Samuel Morabito ◽  
Emily Miyoshi ◽  
Neethu Michael ◽  
Vivek Swarup

Abstract Alzheimer’s disease (AD) is a devastating neurological disorder characterized by changes in cell-type proportions and consequently marked alterations of the transcriptome. Here we use a data-driven systems biology meta-analytical approach across three human AD cohorts, encompassing six cortical brain regions, and integrate with multi-scale datasets comprising of DNA methylation, histone acetylation, transcriptome- and genome-wide association studies and quantitative trait loci to further characterize the genetic architecture of AD. We perform co-expression network analysis across more than 1200 human brain samples, identifying robust AD-associated dysregulation of the transcriptome, unaltered in normal human aging. We assess the cell-type specificity of AD gene co-expression changes and estimate cell-type proportion changes in human AD by integrating co-expression modules with single-cell transcriptome data generated from 27 321 nuclei from human postmortem prefrontal cortical tissue. We also show that genetic variants of AD are enriched in a microglial AD-associated module and identify key transcription factors regulating co-expressed modules. Additionally, we validate our results in multiple published human AD gene expression datasets, which can be easily accessed using our online resource (https://swaruplab.bio.uci.edu/consensusAD).


2021 ◽  
pp. 1-10
Author(s):  
Xian Li ◽  
Yan Tian ◽  
Yu-Xiang Yang ◽  
Ya-Hui Ma ◽  
Xue-Ning Shen ◽  
...  

Background: Several studies showed that life course adiposity was associated with Alzheimer’s disease (AD). However, the underlying causality remains unclear. Objective: We aimed to examine the causal relationship between life course adiposity and AD using Mendelian randomization (MR) analysis. Methods: Instrumental variants were obtained from large genome-wide association studies (GWAS) for life course adiposity, including birth weight (BW), childhood body mass index (BMI), adult BMI, waist circumference (WC), waist-to-hip ratio (WHR), and body fat percentage (BFP). A meta-analysis of GWAS for AD including 71,880 cases and 383,378 controls was used in this study. MR analyses were performed using inverse variance weighted (IVW), weighted median, and MR-Egger regression methods. We calculated odds ratios (ORs) per genetically predicted standard deviation (1-SD) unit increase in each trait for AD. Results: Genetically predicted 1-SD increase in adult BMI was significantly associated with higher risk of AD (IVW: OR = 1.03, 95% confidence interval [CI] = 1.01–1.05, p = 2.7×10–3) after Bonferroni correction. The weighted median method indicated a significant association between BW and AD (OR = 0.94, 95% CI = 0.90–0.98, p = 1.8×10–3). We also found suggestive associations of AD with WC (IVW: OR = 1.03, 95% CI = 1.00–1.07, p = 0.048) and WHR (weighted median: OR = 1.04, 95% CI = 1.00–1.07, p = 0.029). No association was detected of AD with childhood BMI and BFP. Conclusion: Our study demonstrated that lower BW and higher adult BMI had causal effects on increased AD risk.


2011 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
Emily R. Atkins ◽  
Peter K. Panegyres

Alzheimer’s disease (AD) is the largest cause of dementia, affecting 35.6 million people in 2010. Amyloid precursor protein, presenilin 1 and presenilin 2 mutations are known to cause familial early-onset AD, whereas apolipoprotein E (APOE) ε4 is a susceptibility gene for late-onset AD. The genes for phosphatidylinositol- binding clathrin assembly protein, clusterin and complement receptor 1 have recently been described by genome-wide association studies as potential risk factors for lateonset AD. Also, a genome association study using single neucleotide polymorphisms has identified an association of neuronal sortilin related receptor and late-onset AD. Gene testing, and also predictive gene testing, may be of benefit in suspected familial early-onset AD however it adds little to the diagnosis of lateonset AD and does not alter the treatment. We do not recommend APOE ε4 genotyping.


Sign in / Sign up

Export Citation Format

Share Document