scholarly journals Activating PIK3CA mutation promotes adipogenesis of adipose-derived stem cells in macrodactyly via up-regulation of E2F1

2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Bin Sun ◽  
Yongkang Jiang ◽  
Hengqing Cui ◽  
Xia Fang ◽  
Gang Han ◽  
...  

Abstract Macrodactyly is a congenital malformation characterized by enlargement of bone and soft tissues in limbs, typically with excessive accumulation of adipose tissues. Although gain-of-function mutation of PIK3CA has been identified in macrodactyly, the mechanism of PIK3CA mutation in adipose accumulation is poorly understood. In this study, we found that adipocytes from macrodactyly were more hypertrophic than those observed in polydactyly. PIK3CA (H1047R) activating mutation and enhanced activity of PI3K/AKT pathway were detected in macrodactylous adipose-derived stem cells (Mac-ADSCs). Compared to polydactyly-derived ADSCs (Pol-ADSCs), Mac-ADSCs had higher potential in adipogenic differentiation. Knockdown of PIK3CA or inhibition by BYL-719, a potent inhibitor of PIK3CA, impaired adipogenesis of Mac-ADSCs in vitro. In vivo study, either transient treatment of ADSCs or intragastrical gavage with BYL-719 inhibited the adipose formation in patient-derived xenograft (PDX). Furthermore, RNA-seq revealed that E2F1 was up-regulated in Mac-ADSCs and its knockdown blocked the PIK3CA-promoted adipogenesis. Our findings demonstrated that PIK3CA activating mutation promoted adipogenesis of ADSCs in macrodactyly, and that this effect was exerted by the up-regulation of E2F1. This study revealed a possible mechanism for adipose accumulation in macrodactyly and suggested BYL-719 as a potential therapeutic agent for macrodactyly treatment.

2019 ◽  
Vol 47 (12) ◽  
pp. 6303-6314
Author(s):  
Su Wang ◽  
Jian Gao ◽  
Maohuai Wang ◽  
Liquan Chen ◽  
Xiaowei Zhang ◽  
...  

Objective This study investigated the effect of recombinant human connective tissue growth factor (hCTGF) on rat adipose-derived stem cells (ADSCs) and explored the feasibility of using ADSCs to treat pelvic organ prolapse. Methods ADSCs were isolated from rat inguinal adipose tissue and characterized by flow cytometry and for osteogenic and adipogenic differentiation. ADSCs were treated with recombinant hCTGF and qRT-PCR was performed to detect collagen I and III expression on post-treatment days 7, 14, and 28. Osteogenic and adipogenic differentiation of ADSCs was performed to evaluate the effect of hCTGF. ADSCs were seeded in biological grafting materials, acellular porcine pericardium (APP) and acellular bovine pericardium (ABP), then implanted in the rat vagina. Histology was performed to observe inflammation among different groups. Results Collagen I and III expression in ADSCs was significantly increased, and the ability to differentiate into osteogenic and adipogenic lineages was diminished after hCTGF treatment. APP and ABP seeded with ADSCs significantly decreased inflammation and protected from degradation in vivo compared with APP and ABP only; ABP seeded with ADSCs had the lowest inflammation. Conclusion hCTGF regulates collagen I and III expression and induces ADSC differentiation in vitro. ADSCs decrease inflammation associated with APP and ABP in vivo.


Author(s):  
Bruna O. S. Câmara ◽  
Bruno M. Bertassoli ◽  
Natália M. Ocarino ◽  
Rogéria Serakides

The use of stem cells in cell therapies has shown promising results in the treatment of several diseases, including diabetes mellitus, in both humans and animals. Mesenchymal stem cells (MSCs) can be isolated from various locations, including bone marrow, adipose tissues, synovia, muscles, dental pulp, umbilical cords, and the placenta. In vitro, by manipulating the composition of the culture medium or transfection, MSCs can differentiate into several cell lineages, including insulin-producing cells (IPCs). Unlike osteogenic, chondrogenic, and adipogenic differentiation, for which the culture medium and time are similar between studies, studies involving the induction of MSC differentiation in IPCs differ greatly. This divergence is usually evident in relation to the differentiation technique used, the composition of the culture medium, the cultivation time, which can vary from a few hours to several months, and the number of steps to complete differentiation. However, although there is no “gold standard” differentiation medium composition, most prominent studies mention the use of nicotinamide, exedin-4, ß-mercaptoethanol, fibroblast growth factor b (FGFb), and glucose in the culture medium to promote the differentiation of MSCs into IPCs. Therefore, the purpose of this review is to investigate the stages of MSC differentiation into IPCs both in vivo and in vitro, as well as address differentiation techniques and molecular actions and mechanisms by which some substances, such as nicotinamide, exedin-4, ßmercaptoethanol, FGFb, and glucose, participate in the differentiation process.


2021 ◽  
Vol 30 ◽  
pp. 096368972110354
Author(s):  
Eun-Jung Yoon ◽  
Hye Rim Seong ◽  
Jangbeen Kyung ◽  
Dajeong Kim ◽  
Sangryong Park ◽  
...  

Stamina-enhancing effects of human adipose derived stem cells (hADSCs) were investigated in young Sprague-Dawley rats. Ten-day-old male rats were transplanted intravenously (IV) or intracerebroventricularly (ICV) with hADSCs (1 × 106 cells/rat), and physical activity was measured by locomotor activity and rota-rod performance at post-natal day (PND) 14, 20, 30, and 40, as well as a forced swimming test at PND 41. hADSCs injection increased the moving time in locomotor activity, the latency in rota-rod performance, and the maximum swimming time. For the improvement of physical activity, ICV transplantation was superior to IV injection. In biochemical analyses, ICV transplantation of hADSCs markedly reduced serum creatine phosphokinase, lactate dehydrogenase, alanine transaminase, and muscular lipid peroxidation, the markers for muscular and hepatic injuries, despite the reduction in muscular glycogen and serum triglycerides as energy sources. Notably, hADSCs secreted brain-derived neurotrophic factor (BDNF) and nerve growth factor in vitro, and increased the level of BDNF in the brain and muscles in vivo. The results indicate that hADSCs enhance physical activity including stamina not only by attenuating tissue injury, but also by strengthening the muscles via production of BDNF.


2019 ◽  
Vol 6 (6) ◽  
pp. 3213-3221
Author(s):  
Hieu Liem Pham ◽  
Phuc Van Pham

Introduction: The senescence of stem cells is the primary reason that causes aging of stem cell-containing tissues. Some hypotheses have suggested that high glucose concentration in diabetic patients is the main factor that causes senescence of cells in those patients. This study aimed to evaluate the effects of high glucose concentrations on the senescence of adipose-derived stem cells (ADSCs). Methods: ADSCs were isolated and expanded from human adipose tissues. They were characterized and confirmed as mesenchymal stem cells (MSCs) by expression of surface markers, their shape, and in vitro differentiation potential. They were then cultured in 3 different media- that contained 17.5 mM, 35 mM, or 55 mM of D-glucose. The senescent status of ADSCs was recorded by the expression of the enzyme beta-galactosidase, cell proliferation, and doubling time. Real-time RT-PCR was used to evaluate the expression of p16, p21, p53 and mTOR. Results: The results showed that high glucose concentrations (35 mM and 55 mM) in the culture medium induced senescence of human ADSCs. The ADSCs could progress to the senescent status quicker than those cultured in the lower glucose-containing medium (17.5 mM). The senescent state was related to the up-regulation of p16 and mTOR genes. Conclusion: These results suggest that high glucose in culture medium can trigger the expression of p16 and mTOR genes which cause early senescence in ADSCs. Therefore, ADSCs should be cultured in low glucose culture medium, or normal glucose concentration, to extend their life in vitro as well as in vivo.  


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1400
Author(s):  
Enrico C. Torre ◽  
Mesude Bicer ◽  
Graeme S. Cottrell ◽  
Darius Widera ◽  
Francesco Tamagnini

Adipose-derived mesenchymal stromal cells (ASCs) are multipotent stem cells which can differentiate into various cell types, including osteocytes and adipocytes. Due to their ease of harvesting, multipotency, and low tumorigenicity, they are a prime candidate for the development of novel interventional approaches in regenerative medicine. ASCs exhibit slow, spontaneous Ca2+ oscillations and the manipulation of Ca2+ signalling via electrical stimulation was proposed as a potential route for promoting their differentiation in vivo. However, the effects of differentiation-inducing treatments on spontaneous Ca2+ oscillations in ASCs are not yet fully characterised. In this study, we used 2-photon live Ca2+ imaging to assess the fraction of cells showing spontaneous oscillations and the frequency of the oscillation (measured as interpeak interval—IPI) in ASCs undergoing osteogenic or adipogenic differentiation, using undifferentiated ASCs as controls. The measurements were carried out at 7, 14, and 21 days in vitro (DIV) to assess the effect of time in culture on Ca2+ dynamics. We observed that both time and differentiation treatment are important factors associated with a reduced fraction of cells showing Ca2+ oscillations, paralleled by increased IPI times, in comparison with untreated ASCs. Both adipogenic and osteogenic differentiation resulted in a reduction in Ca2+ dynamics, such as the fraction of cells showing intracellular Ca2+ oscillations and their frequency. Adipogenic differentiation was associated with a more pronounced reduction of Ca2+ dynamics compared to cells differentiating towards the osteogenic fate. Changes in Ca2+ associated oscillations with a specific treatment had already occurred at 7 DIV. Finally, we observed a reduction in Ca2+ dynamics over time in untreated ASCs. These data suggest that adipogenic and osteogenic differentiation cell fates are associated with specific changes in spontaneous Ca2+ dynamics over time. While this observation is interesting and provides useful information to understand the functional correlates of stem cell differentiation, further studies are required to clarify the molecular and mechanistic correlates of these changes. This will allow us to better understand the causal relationship between Ca2+ dynamics and differentiation, potentially leading to the development of novel, more effective interventions for both bone regeneration and control of adipose growth.


Author(s):  
Phuc Van Pham ◽  
Loan Thi-Tung Dang ◽  
Nhung Hai Truong ◽  
Ngoc Kim Phan

In recent years, Platelet Rich Plasma (PRP) and Adipose-Derived Stem Cells (ADSCs) have been used separately for many clinical applications, especially skin rejuvenation. A combined injection of PRP and ADSCs could therefore be used to treat skin wrinkles. However, there are controversies and reports with conflicting results regarding the efficacy of this treatment. The authors aimed to determine the anti-wrinkle and skin rejuvenation mechanism of combined PRP and ADSCs treatment. The effects of PRP and ADSCs isolated from the same consenting donors were evaluated using in vitro and in vivo models. The in vitro effects of PRP and ADSCs on dermal fibroblast proliferation, collagen production, and inhibition of Matrix Metalloproteinase-1 (MMP-1) production were investigated using a co-culture model. Fibroblasts and ADSCs were cultured within the same dish, but in two separate cavities (using an insert plate), in the presence of the same PRP-supplemented medium. In vivo, the authors evaluated the effects of combined PRP and ADSCs on skin histochemistry, including changes in the dermal layer and collagen production in photo-aged skin (mice). They also determined the survival and differentiation of grafted ADSCs. The results show that combined PRP and ADSCs strongly stimulate in vitro fibroblast proliferation, collagen production, and inhibition of MMP-1 synthesis. Intra-dermal co-injection of PRP and ADSCs was observed to stimulate increased dermal layer thickness and collagen production compared with the untreated group. These results indicate that a combined PRP and ADSC injection can reduce wrinkles more effectively than either PRP or ADSC alone, and provide insight into the clinical use of PRP combined with ADSCs for dermal applications, particularly skin rejuvenation.


2020 ◽  
Vol 10 (3) ◽  
pp. 66
Author(s):  
Kateryna Yatsenko ◽  
Iryna Lushnikova ◽  
Alina Ustymenko ◽  
Maryna Patseva ◽  
Iryna Govbakh ◽  
...  

Brain inflammation is a key event triggering the pathological process associated with many neurodegenerative diseases. Current personalized medicine and translational research in neurodegenerative diseases focus on adipose-derived stem cells (ASCs), because they are patient-specific, thereby reducing the risk of immune rejection. ASCs have been shown to exert a therapeutic effect following transplantation in animal models of neuroinflammation. However, the mechanisms by which transplanted ASCs promote cell survival and/or functional recovery are not fully understood. We investigated the effects of ASCs in in vivo and in vitro lipopolysaccharide (LPS)-induced neuroinflammatory models. Brain damage was evaluated immunohistochemically using specific antibody markers of microglia, astroglia and oligodendrocytes. ASCs were used for intracerebral transplantation, as well as for non-contact co-culture with brain slices. In both in vivo and in vitro models, we found that LPS caused micro- and astroglial activation and oligodendrocyte degradation, whereas the presence of ASCs significantly reduced the damaging effects. It should be noted that the observed ASCs protection in a non-contact co-culture suggested that this effect was due to humoral factors via ASC-released biomodulatory molecules. However, further clinical studies are required to establish the therapeutic mechanisms of ASCs, and optimize their use as a part of a personalized medicine strategy.


2019 ◽  
Vol 20 (22) ◽  
pp. 5589
Author(s):  
Jaeim Lee ◽  
Ok-Hee Kim ◽  
Sang Chul Lee ◽  
Kee-Hwan Kim ◽  
Jin Sun Shin ◽  
...  

Peroxisome proliferator activated receptor λ coactivator 1α (PGC-1α) is a potent regulator of mitochondrial biogenesis and energy metabolism. In this study, we investigated the therapeutic potential of the secretome released from the adipose-derived stem cells (ASCs) transfected with PGC-1α (PGC-secretome). We first generated PGC-1α-overexpressing ASCs by transfecting ASCs with the plasmids harboring the gene encoding PGC-1α. Secretory materials released from PGC-1α-overexpressing ASCs were collected and their therapeutic potential was determined using in vitro (thioacetamide (TAA)-treated AML12 cells) and in vivo (70% partial hepatectomized mice) models of liver injury. In the TAA-treated AML12 cells, the PGC-secretome significantly increased cell viability, promoted expression of proliferation-related markers, such as PCNA and p-STAT, and significantly reduced the levels of reactive oxygen species (ROS). In the mice, PGC-secretome injections significantly increased liver tissue expression of proliferation-related markers more than normal secretome injections did (p < 0.05). We demonstrated that the PGC-secretome does not only have higher antioxidant and anti-inflammatory properties, but also has the potential of significantly enhancing liver regeneration in both in vivo and in vitro models of liver injury. Thus, reinforcing the mitochondrial antioxidant potential by transfecting ASCs with PGC-1α could be one of the effective strategies to enhance the therapeutic potential of ASCs.


Sign in / Sign up

Export Citation Format

Share Document