scholarly journals TIMELESS regulates sphingolipid metabolism and tumor cell growth through Sp1/ACER2/S1P axis in ER-positive breast cancer

2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Shan Zhang ◽  
Peiqi Huang ◽  
Huijuan Dai ◽  
Qing Li ◽  
Lipeng Hu ◽  
...  

Abstract Breast cancer is one of the most common female malignant cancers. Biorhythm disorder largely increases the risk of breast cancer. We aimed to investigate the biological functions and molecular mechanisms of circadian gene TIMELESS circadian regulator (TIM) in estrogen receptor (ER)-positive breast cancer and provide a new therapeutic target for breast cancer patients. Here, we explored that the expression of TIM was elevated in breast cancer, and high expression of TIM in cancer tissues was associated with poor prognosis, especially in the ER-positive breast cancer patients. In addition, we found that TIM promoted cell proliferation and enhanced mitochondrial respiration. TIM interacted with specificity protein 1 (Sp1) which contributes to upregulate the expression of alkaline ceramidase 2 (ACER2). Moreover, ACER2 is responsible for TIM-mediated promotive effects of cell growth and mitochondrial respiration. Collectively, our research unveiled a novel function of TIM in sphingolipid metabolism through interaction with Sp1. It provides a new theoretical explanation for the pathogenesis of breast cancer, and targeting TIM may serve as a potential therapeutic target for ER-positive breast cancer.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 771
Author(s):  
Tessa A. M. Mulder ◽  
Mirjam de With ◽  
Marzia del Re ◽  
Romano Danesi ◽  
Ron H. J. Mathijssen ◽  
...  

Tamoxifen is a major option for adjuvant endocrine treatment in estrogen receptor (ER) positive breast cancer patients. The conversion of the prodrug tamoxifen into the most active metabolite endoxifen is mainly catalyzed by the enzyme cytochrome P450 2D6 (CYP2D6). Genetic variation in the CYP2D6 gene leads to altered enzyme activity, which influences endoxifen formation and thereby potentially therapy outcome. The association between genetically compromised CYP2D6 activity and low endoxifen plasma concentrations is generally accepted, and it was shown that tamoxifen dose increments in compromised patients resulted in higher endoxifen concentrations. However, the correlation between CYP2D6 genotype and clinical outcome is still under debate. This has led to genotype-based tamoxifen dosing recommendations by the Clinical Pharmacogenetic Implementation Consortium (CPIC) in 2018, whereas in 2019, the European Society of Medical Oncology (ESMO) discouraged the use of CYP2D6 genotyping in clinical practice for tamoxifen therapy. This paper describes the latest developments on CYP2D6 genotyping in relation to endoxifen plasma concentrations and tamoxifen-related clinical outcome. Therefore, we focused on Pharmacogenetic publications from 2018 (CPIC publication) to 2021 in order to shed a light on the current status of this debate.


Oncotarget ◽  
2017 ◽  
Vol 8 (32) ◽  
pp. 52142-52155 ◽  
Author(s):  
Takashi Takeshita ◽  
Yutaka Yamamoto ◽  
Mutsuko Yamamoto-Ibusuki ◽  
Mai Tomiguchi ◽  
Aiko Sueta ◽  
...  

2004 ◽  
Vol 2 (3) ◽  
pp. 71 ◽  
Author(s):  
V.F Semiglazov ◽  
V.V Semiglazov ◽  
V.G Ivanov ◽  
E.K Ziltsova ◽  
G.A Dashian ◽  
...  

2019 ◽  
Vol 39 (23) ◽  
Author(s):  
Yuichi Mitobe ◽  
Kazuhiro Ikeda ◽  
Takashi Suzuki ◽  
Kiyoshi Takagi ◽  
Hidetaka Kawabata ◽  
...  

ABSTRACT Acquired endocrine therapy resistance is a significant clinical problem for breast cancer patients. In recent years, increasing attention has been paid to long noncoding RNA (lncRNA) as a critical modulator for cancer progression. Based on RNA-sequencing data of breast invasive carcinomas in The Cancer Genome Atlas database, we identified thymopoietin antisense transcript 1 (TMPO-AS1) as a functional lncRNA that significantly correlates with proliferative biomarkers. TMPO-AS1 positivity analyzed by in situ hybridization significantly correlates with poor prognosis of breast cancer patients. TMPO-AS1 expression was upregulated in endocrine therapy-resistant MCF-7 cells compared with levels in parental cells and was estrogen inducible. Gain and loss of TMPO-AS1 experiments showed that TMPO-AS1 promotes the proliferation and viability of estrogen receptor (ER)-positive breast cancer cells in vitro and in vivo. Global expression analysis using a microarray demonstrated that TMPO-AS1 is closely associated with the estrogen signaling pathway. TMPO-AS1 could positively regulate estrogen receptor 1 (ESR1) mRNA expression by stabilizing ESR1 mRNA through interaction with ESR1 mRNA. Enhanced expression of ESR1 mRNA by TMPO-AS1 could play a critical role in the proliferation of ER-positive breast cancer. Our findings provide a new insight into the understanding of molecular mechanisms underlying hormone-dependent breast cancer progression and endocrine resistance.


The Breast ◽  
2012 ◽  
Vol 21 (5) ◽  
pp. 662-668 ◽  
Author(s):  
Mathilde S. Larsen ◽  
Karsten Bjerre ◽  
Anne E. Lykkesfeldt ◽  
Anita Giobbie-Hurder ◽  
Anne-Vibeke Lænkholm ◽  
...  

2008 ◽  
Vol 42 (2) ◽  
pp. 87-103 ◽  
Author(s):  
Sandra E Ghayad ◽  
Julie A Vendrell ◽  
Ivan Bieche ◽  
Frédérique Spyratos ◽  
Charles Dumontet ◽  
...  

Cross-resistance to molecules used in endocrine therapy is among the main challenges in the treatment of estrogen receptor-α (ERα) positive breast cancer. In this study, we used two different cell models of resistance to anti-estrogens: MVLN/CL6.7 cells and VP229/VP267 cells selected after exposure to tamoxifen respectively in vitro and in vivo to characterize a phenotype rarely observed, i.e. acquisition of cross-resistance to the pure ER antagonist fulvestrant. As MVLN/CL6.7 cells and VP229/VP267 cell lines are original and valuable models of cross-resistance to tamoxifen and fulvestrant, we examined candidate genes using a RTQ-PCR strategy to identify new biomarkers of endocrine resistance. Out of the 26 candidate genes tested, 19 displayed deregulation of expression at the basal level in at least one of the two resistant cell lines. Eight genes (TACC1, NOV, PTTG1, MAD2L1, BAK1, TGFB2, BIRC5, and CCNE2) were significantly overexpressed in samples from ER-positive breast cancer patients who relapsed after tamoxifen treatment (n=24) compared with samples from patients who did not (n=24). Five genes (TACC1, NOV, PTTG1, BAK1, and TGFB2) were correlated with significantly shorter relapse-free survival (univariate analysis). Finally, we identified TACC1 and a three-gene expression signature (TACC1, NOV, and PTTG1) as independent prognostic markers (multivariate analysis). Aberrant mRNA and protein levels of TACC1, NOV, and PTTG1 were also observed under tamoxifen and/or fulvestrant exposure in resistant CL6.7 cells compared with their respective control MVLN cells. In conclusion, our data identify TACC1, NOV, and PTTG1 as promising new markers that could be used in the clinical management of ER-positive breast cancer patients.


Sign in / Sign up

Export Citation Format

Share Document