scholarly journals GIPC2 is an endocrine-specific tumor suppressor gene for both sporadic and hereditary tumors of RET- and SDHB-, but not VHL-associated clusters of pheochromocytoma/paraganglioma

2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Yeqing Dong ◽  
Yongsheng Huang ◽  
Chengyan Fan ◽  
Liang Wang ◽  
Ran Zhang ◽  
...  

AbstractPheochromocytoma/paraganglioma (PPGL) is an endocrine tumor of the chromaffin cells in the adrenal medulla or the paraganglia. Currently, about 70% of PPGLs can be explained by germline or somatic mutations in several broadly expressed susceptibility genes including RET, VHL, and SDHB, while for the remaining, mainly sporadic cases, the pathogenesis is still unclear. Even for known susceptible genes, how mutations in these mostly ubiquitous genes result in tissue-specific pathogenesis remains unanswered, and why RET-mutated tumors almost always occur in the adrenal while SDHB-mutated tumors mostly occur extra-adrenal remains a mystery. By analyzing 22 sporadic PPGLs using SNP 6.0 genotyping arrays combined with expression profiling of 4 normal and 4 tumor tissues, we identified GIPC2, a gene located at 1p31.1 with preferential expression in adrenal and inducible by adrenal glucocorticoid, as a novel putative tumor suppressor gene for PPGLs. Copy number deletion and GIPC2 promoter hypermethylation but not GIPC2 mutation, accompanied with reduced GIPC2 expression, were observed in 39 of 55 PPGLs in our cohort. Examination of a published expression database consisting of 188 PPGLs found little GIPC2 expression in Cluster 1A (SDHx-associated) and Cluster 2A (NF1/RET-associated) tumors, but less pronounced reduction of GIPC2 expression in Cluster 1B (VHL-associated) and Cluster 2B/2C tumors. GIPC2 induced p27, suppressed MAPK/ERK and HIF-1ɑ pathways as well as cancer cell proliferation. Overexpressing GIPC2 in PC12 cells inhibited tumor growth in nude mice. We found GIPC2 interacted with the nucleoprotein NONO and both proteins regulated p27 transcription through the same GGCC box on p27 promoter. Significantly, low expression of both GIPC2 and p27 was associated with shorter disease-free survival time of PPGLs patients in the TCGA database. We found that PPGL-causing mutations in RET and in SDHB could lead to primary rat adrenal chromaffin cell proliferation, ERK activation, and p27 downregulation, all requiring downregulating GIPC2. Notably, the RET-mutant effect required the presence of dexamethasone while the SDHB-mutant effect required its absence, providing a plausible explanation for the tumor location preference. In contrast, the PPGL-predisposing VHL mutations had no effect on proliferation and GIPC2 expression but caused p53 downregulation and reduced apoptosis in chromaffin cells compared with wild-type VHL. Thus, our study raises the importance of cortical hormone in PPGL development, and GIPC2 as a novel tumor suppressor provides a unified molecular mechanism for the tumorigenesis of both sporadic and hereditary tumors of Clusters 1A and 2A concerning SDHB and RET, but not tumors of Cluster 1B concerning VHL and other clusters.

2006 ◽  
Vol 17 (8) ◽  
pp. 3534-3542 ◽  
Author(s):  
Minghua Wu ◽  
Chen Huang ◽  
Kai Gan ◽  
He Huang ◽  
Qiong Chen ◽  
...  

We have previously reported that the LRRC4 gene, which contains a conserved leucine-rich repeat (LRR) cassette and an immunoglobulin (Ig) IgC2 domain, is associated with glioma suppression both in vitro and in vivo. The present study provides evidence that the conspicuous absence of LRRC4 in high-grade gliomas directly contributes to the increasing tumor grade. The loss of LRRC4 in U251 cells is caused by the loss of homozygosity at chromosome 7q32-ter. It was also found that LRRC4 requires a functional LRR cassette domain to suppress U251 cell proliferation. In the LRR cassette domain, the third LRR motif of the core LRR is found to be indispensable for the function of LRRC4. The inhibitory effect of LRRC4 is accompanied by a decrease in the expression of pERK, pAkt, pNF-κBp65, signal transducer and activator of transcription protein-3 (STAT3), and mutant p53, and an increase in the expression of c-Jun NH2-terminal kinase (JNK)2 and p-c-Jun, suggesting that LRRC4 plays a major role in suppressing U251 cell proliferation by regulating the extracellular signal-regulated kinase (ERK)/Akt/NF-κBp65, STAT3, and JNK2/c-Jun pathways. In conclusion, LRRC4 may act as a novel candidate of tumor suppressor gene. Therefore, the loss of LRRC4 function may be an important event in the progression of gliomas.


2020 ◽  
Vol 20 (18) ◽  
pp. 2207-2215
Author(s):  
Yulong Hou ◽  
Shuofeng Li ◽  
Wei Du ◽  
Hailong Li ◽  
Rumin Wen

The Ras association domain family 10(RASSF10), a tumor suppressor gene, is located on human chromosome 11p15.2, which is one of the members homologous to other N-terminal RASSF families obtained through structural prediction. RASSF10 plays an important role in inhibiting proliferation, invasion, and migration, inducing apoptosis, making cancer cells sensitive to docetaxel, and capturing G2/M phase. Some studies have found that RASSF10 may inhibit the occurrence and development of tumors by regulating Wnt/β-catenin, P53, and MMP2. Methylation of tumor suppressor gene promoter is a key factor in the development and progression of many tumors. Various methylation detection methods confirmed that the methylation and downregulation of RASSF10 often occur in various tumors, such as gastric cancer, lung cancer, colon cancer, breast cancer, and leukemia. The status of RASSF10 methylation is positively correlated with tumor size, tumor type, and TNM stage. RASSF10 methylation can be used as a prognostic factor for overall survival and disease-free survival, and is also a sign of tumor diagnosis and sensitivity to docetaxel chemotherapy. In this review, we mainly elucidate the acknowledged structure and progress in the verified functions of RASSF10 and the probably relevant signaling pathways.


Cell ◽  
1992 ◽  
Vol 69 (1) ◽  
pp. 111-117 ◽  
Author(s):  
Mae R. Gailani ◽  
Sherri J. Bale ◽  
David J. Leffell ◽  
John J. DiGiovanna ◽  
Gary L. Peck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document