scholarly journals A KDM4A-PAF1-mediated epigenomic network is essential for acute myeloid leukemia cell self-renewal and survival

2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Matthew E. Massett ◽  
Laura Monaghan ◽  
Shaun Patterson ◽  
Niamh Mannion ◽  
Roderick P. Bunschoten ◽  
...  

AbstractEpigenomic dysregulation is a common pathological feature in human hematological malignancies. H3K9me3 emerges as an important epigenomic marker in acute myeloid leukemia (AML). Its associated methyltransferases, such as SETDB1, suppress AML leukemogenesis, whilst H3K9me3 demethylases KDM4C is required for mixed-lineage leukemia rearranged AML. However, the specific role and molecular mechanism of action of another member of the KDM4 family, KDM4A has not previously been clearly defined. In this study, we delineated and functionally validated the epigenomic network regulated by KDM4A. We show that selective loss of KDM4A is sufficient to induce apoptosis in a broad spectrum of human AML cells. This detrimental phenotype results from a global accumulation of H3K9me3 and H3K27me3 at KDM4A targeted genomic loci thereby causing downregulation of a KDM4A-PAF1 controlled transcriptional program essential for leukemogenesis, distinct from that of KDM4C. From this regulatory network, we further extracted a KDM4A-9 gene signature enriched with leukemia stem cell activity; the KDM4A-9 score alone or in combination with the known LSC17 score, effectively stratifies high-risk AML patients. Together, these results establish the essential and unique role of KDM4A for AML self-renewal and survival, supporting further investigation of KDM4A and its targets as a potential therapeutic vulnerability in AML.

2020 ◽  
Author(s):  
Matthew E Massett ◽  
Laura Monaghan ◽  
Shaun Patterson ◽  
Niamh Mannion ◽  
Roderick P Bunschoten ◽  
...  

AbstractEpigenomic dysregulation is a common pathological feature in human hematological malignancies. H3K9me3 emerges as an important epigenomic marker in acute myeloid leukemia (AML). Its associated methyltransferases, such as SETDB1, suppress AML leukemogenesis, whilst H3K9me3 demethylases KDM4C is required for mixed lineage leukemia rearranged AML. However, the specific role and molecular mechanism of action of another member of KDM4 family, KDM4A has not previously been clearly defined. In this study, we delineated and functionally validated the epigenomic network regulated by KDM4A. We show that selective loss of KDM4A is sufficient to induce apoptosis in a broad spectrum of human AML cells. This detrimental phenotype results from a global accumulation of H3K9me3 and H3K27me3 at KDM4A targeted genomic loci thereby causing down-regulation of a KDM4A-PAF1 controlled transcriptional program essential for leukemogenesis, distinct from that of KDM4C. From this regulatory network, we further extracted a KDM4A-9 gene signature enriched with leukemia stem cell activity; the KDM4A-9 score alone or in combination with the known LSC17 score, effectively stratifies high-risk AML patients. Together, these results establish the essential and unique role of KDM4A for AML self-renewal and survival, supporting further investigation of KDM4A and its targets as a potential therapeutic vulnerability in AML.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2730-2730 ◽  
Author(s):  
Susumu Goyama ◽  
Mahesh Shrestha ◽  
Janet Schibler ◽  
Leah Rosenfeldt ◽  
Whitney Miller ◽  
...  

Abstract Leukemic stem cells (LSCs) are capable of limitless self-renewal and indefinitely propagating leukemia. Eradication of LSCs is the ultimate goal of treating acute myeloid leukemia (AML). Using a mouse model of AML induced by the MLL-fusion protein MLL-AF9, we recently showed that the combined loss of Runx1/Cbfb inhibited the development of leukemia in vivo (Goyama S…Mulloy JC. Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. Journal of Clinical Investigation 123(9): 3876-3888, 2013). However, LSC-enriched cells with immature surface phenotype (cKit+Gr1-) remained viable in Runx1/Cbfb-deleted MLL-AF9 cells, indicating that RUNX targeting may not eradicate the most immature LSCs. Gene expression analyses of Runx1/Cbfb-deleted MLL-AF9 cells revealed the upregulation of thrombin pathway genes including a thrombin-activatable receptor PAR-1. Interestingly, both overexpression and knockout of PAR-1 inhibit leukemogenesis but do so through distinct mechanisms. Similar to the effect of Runx1/Cbfb-depletion, PAR-1 overexpression induced p21 expression and attenuated proliferation in MLL-AF9 cells. To our surprise, PAR-1-deficiency also prevented leukemia development induced by a small number of MLL-AF9 LSCs in vivo. Re-expression of PAR-1 in PAR-1-deficient cells combined with a limiting-dilution transplantation assay demonstrated the cell-dose dependent role of PAR-1 in MLL-AF9 leukemia: PAR-1 inhibited rapid leukemic proliferation when there are a large number of LSCs, while a small numbers of LSCs required PAR-1 for their growth. Mechanistically, PAR-1 increased adhering properties of MLL-AF9 cells and promoted their engraftment to bone marrow. PAR-1-deficiency also reduced leukemogenicity of AML1-ETO-induced leukemia. Together, these data reveal a multifaceted role for PAR-1 in leukemogenesis, and highlight this receptor as a potential target to eradicate primitive LSCs in AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4734-4734
Author(s):  
Miaorong She ◽  
Xingqing Niu ◽  
Xilin Chen ◽  
Guo Kunyuan ◽  
Maohua Zhou ◽  
...  

Abstract Acute myeloid leukemia (AML) is initiated and maintained by a rare population of (leukemic stem cells) LSCs. LSCs play the central role in the relapse and refractory of AML and highlight the critical need for the new therapeutic strategies to directly target the LSC population for ultimately curing leukemia which is it is important to identify and study LSCs. However, relatively little is known about the unique molecular mechanisms of survival and self-renewal of LSCs because of very small number of LSCs in bone marrow. In this study, we investigated whether established leukemia cell lines contain LSCs. We showed that leukemia cell line contain leukemic stem-like cells which have been phenotypically restricted within the CD34+CD38− fraction. We demonstrated that CD34+CD38− cells could generate CD34+CD38+ cells in culture medium and had proliferation function. Moreover, CD34+CD38− cells had self-renewal potential both in vitro soft agar colonies formation assay and in vivo NOD/SCID mouse xenotransplant model serial transplantation. Furthermore, CD34+CD38− cells isolated from leukemia cell line were found resistant to conventional chemotherapy and NK cells-mediated cytotoxicity and these were related to up-regulation of ABCG2 and MRP-1 and antiapoptotic proteins of Bcl2. Down-regulation of NKG2D ligand also played a critical role in NK cytotoxicity resistance. Taken together, our studies provide a novel cell model for leukemic stem cells research. Our data also shed light on mechanism of double resistant to resistant to chemotherapy and NK cell immunotherapy, which was helpful for developing novel effective strategies for LSCs.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1236-1236
Author(s):  
Caryn J. Ha ◽  
Wenhuo Hu ◽  
Harold K. Elias ◽  
Sohini Chakraborty ◽  
Christopher Y. Park

Epigenetic regulators in normal and malignant hematopoiesis have been shown to be important in normal and malignant stem cell self-renewal function and myeloid leukemogenesis. While epigenetic dysregulation can occur through activating and/or loss-of-function mutations, these regulators can also be modulated by other regulators, such as microRNAs. Specifically, miR-29 has been previously identified as an "epi-mir" for contributing to epigenetic regulation by altering expression of DNMT3a and TET. We and others have previously shown that in the hematopoietic system, miR-29 is a positive regulator of hematopoietic stem cell (HSC) self-renewal, is upregulated in AML blasts, and when over-expressed in transplanted HSCs and immature progenitors, leads to a myeloproliferative-like disorder that progresses to acute myeloid leukemia (AML). To investigate how miR-29 shapes the leukemic stem cell (LSC) epigenome, we transduced the MLL-AF9 fusion oncogene into WT and mir29a/b1 null Lin-ckit+sca1+ (LSK) cells and transplanted them into recipient mice. Transplantation of MLL-AF9+ miR-29 null cells into lethally irradiated recipients resulted in an increased disease latency compared to recipients of WT MLL-AF9+ cells (median: 56 vs 151 days, p<0.001). Characterization of miR-29 null blasts revealed increased expression of myeloid differentiation markers (CD11b, CD14), increased apoptosis, and reduced CFU capacity, consistent with decreased LSC self-renewal. To gain molecular insights into this phenotype, we interrogated RNA-seq data generated from WT and miR-29 null blasts. Compared to WT blasts, miR-29 null blasts showed loss of LSC gene signatures and enrichment for myeloid lineage genes, consistent with increased differentiation (Figure A). In addition, GSEA showed enrichment of H3K27me3, H3K4me2, and gene-specific polycomb group (PcG) associated pathways. On further validation, ChIP-Seq showed overall genome-wide reduction of DNA modification markers such as H3K27me3, H3K9me3, H3K36me3, H3K79me2, and H3K4me3 in miR-29 null blasts compared to WT. Hence, we hypothesized that miR-29 likely targets epigenetic regulators critical for LSC maintenance, and that loss of miR-29 rewires the LSC epigenetic landscape to induce differentiation and abrogate LSC self-renewal. In order to identify downstream mediators of the miR-29 null blast epigenetic phenotype, we used an shRNA library against 500 known epigenetic regulators. The top enriched genes in miR-29 null blasts were members of the PcG family, and as predicted, mRNAs encoding these proteins were upregulated in miR-29 null blasts, including CBX2. These findings were further corroborated by comparing the transcriptomes of AML patient samples to normal hematopoietic stem/progenitor cells (https://gexc.riken.jp), which showed that CBX2 has lower expression in LSCs and blasts compared to normal HSCs and GMPs. When we overexpressed CBX2 in K562 and THP-1 myeloid leukemia cell lines, we observed increased apoptosis and myeloid differentiation as well as impaired clonogenic capacity in vitro, suggesting that downregulation of CBX2 is important in myeloid leukemogenesis. Collectively, our studies indicate that miR-29 promotes LSC function by restricting CBX2 expression to maintain the AML epigenetic landscape. Disclosures No relevant conflicts of interest to declare.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ana Filipa Domingues ◽  
Rashmi Kulkarni ◽  
George Giotopoulos ◽  
Shikha Gupta ◽  
Laura Vinnenberg ◽  
...  

Acute Myeloid Leukemia (AML) is an aggressive hematological malignancy with abnormal progenitor self-renewal and defective white blood cell differentiation. Its pathogenesis comprises subversion of transcriptional regulation, through mutation and by hijacking normal chromatin regulation. Kat2a is a histone acetyltransferase central to promoter activity, that we recently associated with stability of pluripotency networks, and identified as a genetic vulnerability in AML. Through combined chromatin profiling and single-cell transcriptomics of a conditional knockout mouse, we demonstrate that Kat2a contributes to leukemia propagation through preservation of leukemia stem-like cells. Kat2a loss impacts transcription factor binding and reduces transcriptional burst frequency in a subset of gene promoters, generating enhanced variability of transcript levels. Destabilization of target programs shifts leukemia cell fate out of self-renewal into differentiation. We propose that control of transcriptional variability is central to leukemia stem-like cell propagation, and establish a paradigm exploitable in different tumors and distinct stages of cancer evolution.


Oncogene ◽  
2016 ◽  
Vol 36 (18) ◽  
pp. 2589-2598 ◽  
Author(s):  
S Goyama ◽  
M Shrestha ◽  
J Schibler ◽  
L Rosenfeldt ◽  
W Miller ◽  
...  

Cell Reports ◽  
2021 ◽  
Vol 36 (7) ◽  
pp. 109559
Author(s):  
Rui Sun ◽  
Lixiazi He ◽  
Hyeyoon Lee ◽  
Andrey Glinka ◽  
Carolin Andresen ◽  
...  

Oncogene ◽  
2012 ◽  
Vol 32 (7) ◽  
pp. 930-938 ◽  
Author(s):  
J Shi ◽  
E Wang ◽  
J Zuber ◽  
A Rappaport ◽  
M Taylor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document