scholarly journals Signaling through TLR5 mitigates lethal radiation damage by neutrophil-dependent release of MMP-9

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Craig M. Brackett ◽  
Kellee F. Greene ◽  
Alyssa R. Aldrich ◽  
Nicholas H. Trageser ◽  
Srabani Pal ◽  
...  

AbstractAcute radiation syndrome (ARS) is a major cause of lethality following radiation disasters. A TLR5 agonist, entolimod, is among the most powerful experimental radiation countermeasures and shows efficacy in rodents and non-human primates as a prophylactic (radioprotection) and treatment (radiomitigation) modality. While the prophylactic activity of entolimod has been connected to the suppression of radiation-induced apoptosis, the mechanism by which entolimod functions as a radiomitigator remains poorly understood. Uncovering this mechanism has significant and broad-reaching implications for the clinical development and improvement of TLR5 agonists for use as an effective radiation countermeasure in scenarios of mass casualty resulting from accidental exposure to ionizing radiation. Here, we demonstrate that in contrast to radioprotection, neutrophils are essential for the radiomitigative activity of entolimod in a mouse model of lethal ARS. Neutrophils express functional TLR5 and rapidly exit the bone marrow (BM), accumulate in solid tissues, and release MMP-9 following TLR5 stimulation which is accompanied by an increase in the number of active hematopoietic pluripotent precursors (HPPs) in the BM. Importantly, recombinant MMP-9 by itself has radiomitigative activity and, in the absence of neutrophils, accelerates the recovery of the hematopoietic system. Unveiling this novel TLR5-neutrophil-MMP-9 axis of radiomitigation opens new opportunities for the development of efficacious radiation countermeasures to treat ARS following accidental radiation disasters.

PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0169767 ◽  
Author(s):  
Karine Z. Oben ◽  
Beth W. Gachuki ◽  
Sara S. Alhakeem ◽  
Mary K. McKenna ◽  
Ying Liang ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256208
Author(s):  
W. Bradley Rittase ◽  
Elizabeth A. McCart ◽  
Jeannie M. Muir ◽  
Roxane M. Bouten ◽  
John E. Slaven ◽  
...  

Our laboratory has demonstrated that captopril, an angiotensin converting enzyme inhibitor, mitigates hematopoietic injury following total body irradiation in mice. Improved survival in mice is correlated with improved recovery of mature blood cells and bone marrow, reduction of radiation-induced inflammation, and suppression of radiation coagulopathy. Here we investigated the effects of captopril treatment against radiation injuries in the Göttingen mini pig model of Hematopoietic-Acute Radiation Syndrome (H-ARS). Minipigs were given captopril orally (0.96 mg/kg) twice daily for 12 days following total body irradiation (60Co 1.79 Gy, 0.42–0.48 Gy/min). Blood was drawn over a time course following irradiation, and tissue samples were collected at euthanasia (32–35 days post-irradiation). We observed improved survival with captopril treatment, with survival rates of 62.5% in vehicle treated and 87.5% in captopril treated group. Additionally, captopril significantly improved recovery of peripheral blood mononuclear cells, and a trend toward improvement in recovery of red blood cells and platelets. Captopril significantly reduced radiation-induced expression of cytokines erythropoietin and granulocyte-macrophage colony-stimulating factor and suppressed radiation-induced acute-phase inflammatory response cytokine serum amyloid protein A. Using quantitative-RT-PCR to monitor bone marrow recovery, we observed significant suppression of radiation-induced expression of redox stress genes and improved hematopoietic cytokine expression. Our findings suggest that captopril activities in the Göttingen minipig model of hematopoietic-acute radiation syndrome reflect findings in the murine model.


2019 ◽  
Author(s):  
Shin-ichi Hirano ◽  
Yukimasa Aoki ◽  
Ryosuke Kurokawa ◽  
Xiao-Kang Li ◽  
Naotsugu Ichimaru ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Lin Song ◽  
Lijuan Cao ◽  
Rui Liu ◽  
Hui Ma ◽  
Yanan Li ◽  
...  

AbstractGlucocorticoids (GC) are widely used clinically, despite the presence of significant side effects, including glucocorticoid-induced osteoporosis (GIOP). While GC are believed to act directly on osteoblasts and osteoclasts to promote osteoporosis, the detailed underlying molecular mechanism of GC-induced osteoporosis is still not fully elucidated. Here, we show that lymphocytes play a pivotal role in regulating GC-induced osteoporosis. We show that GIOP could not be induced in SCID mice that lack T cells, but it could be re-established by adoptive transfer of splenic T cells from wild-type mice. As expected, T cells in the periphery are greatly reduced by GC; instead, they accumulate in the bone marrow where they are protected from GC-induced apoptosis. These bone marrow T cells in GC-treated mice express high steady-state levels of NF-κB receptor activator ligand (RANKL), which promotes the formation and maturation of osteoclasts and induces osteoporosis. Taken together, these findings reveal a critical role for T cells in GIOP.


2013 ◽  
Vol 2 (11) ◽  
pp. 916-927 ◽  
Author(s):  
Christine Linard ◽  
Elodie Busson ◽  
Valerie Holler ◽  
Carine Strup-Perrot ◽  
Jean-Victor Lacave-Lapalun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document