scholarly journals Bak instead of Bax plays a key role in metformin-induced apoptosis s in HCT116 cells

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hongce Chen ◽  
Beini Sun ◽  
Han Sun ◽  
Lingjun Xu ◽  
Guihao Wu ◽  
...  

AbstractMetformin (Met) exhibits anticancer ability in various cancer cell lines. This report aims to explore the exact molecular mechanism of Met-induced apoptosis in HCT116 cells, a human colorectal cancer cell line. Met-induced reactive oxygen species (ROS) increase and ROS-dependent cell death accompanied by plasma membrane blistering, mitochondrial swelling, loss of mitochondrial membrane potential, and release of cytochrome c. Western blotting analysis showed that Met upregulated Bak expression but downregulated Bax expression. Most importantly, silencing Bak instead of Bax inhibited Met-induced loss of mitochondrial membrane potential, indicating the key role of Bak in Met-induced apoptosis. Live-cell fluorescence resonance energy transfer (FRET) analysis showed that Met unlocked the binding of Mcl-1 to Bak, and enhanced the binding of Bim to Bak and subsequent Bak homo-oligomerization. Western blotting analysis showed that Met enhanced AMPK phosphorylation and Bim expression, and compound C, an inhibitor of AMPK, inhibited Met-induced Bim upregulation. Although Met increased the expression of Bcl-xL, overexpression of Bcl-xL did not prevent Met-induced apoptosis. In summary, our data demonstrate for the first time that Met promotes ROS-dependent apoptosis by regulating the Mcl-1-Bim-Bak axis.

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The oxidative stress is an important component of the pathogenesis of PD. Artemisinin (ART) has antioxidant and neuroprotective effects. The purpose of this study is to explore the neuroprotective effect of ART on 1-methyl-4-phenyliodine iodide (MPP +)-treated SH-SY5Y cells and underlying mechanism. Methods We used MPP+-treated SH-SY5Y cells to study the neuroprotective effect of ART. Cell viability was measured by MTT assay after incubating the cells with MPP+ and/or ART for 24 h. DCFH-DA was used to detect the level of intracellular reactive oxygen species (ROS), and WST-8 was used to detect the level of superoxide dismutase (SOD). The level of intracellular reduced glutathione (GSH) was detected with 5,5΄-dithiobis-(2-nitrobenzoic acid), and the level of malondialdehyde (MDA) was assessed based on the reaction of MDA and thiobarbituric acid. A mitochondrial membrane potential detection kit (JC-1) was used to detect changes in the mitochondrial membrane potential (MMP), and an Annexin V-FITC cell apoptosis kit was used to detect cell apoptosis. The expression levels of caspase-3, cleaved caspase-3 and the autophagy-related proteins LC3, beclin-1, and p62 were detected by Western blotting. In addition, to verify the change in autophagy, we used immunofluorescence to detect the expression of LC3 and p62. Results No significant cytotoxicity was observed at ART concentrations up to 40 μM. ART could significantly increase the viability of SH-SY5Y cells treated with MPP+ and reduce oxidative stress damage and apoptosis. In addition, the Western blotting and immunofluorescence results showed that MPP+ treatment could increase the protein expression of beclin1 and LC3II/LC3I and decrease the protein expression of p62, indicating that MPP+ treatment could induce autophagy. Simultaneous treatment with ART and MPP+ could decrease the protein expression of beclin1 and LC3II/LC3I and increase the protein expression of p62, indicating that ART could decrease the level of autophagy induced by MPP+. Conclusion Our results indicate that ART has a protective effect on MPP+-treated SH-SY5Y cells by the antioxidant, antiapoptotic activities and inhibition of autophagy. Our findings may provide new hope for the prevention and treatment of PD.


2014 ◽  
Vol 306 (4) ◽  
pp. C334-C342 ◽  
Author(s):  
Eiji Takahashi ◽  
Michihiko Sato

To elucidate how tumor cells produce energy in oxygen-depleted microenvironments, we studied the possibility of mitochondrial electron transport without oxygen. We produced well-controlled oxygen gradients (ΔO2) in monolayer-cultured cells. We then visualized oxygen levels and mitochondrial membrane potential (ΔΦm) in individual cells by using the red shift of green fluorescent protein (GFP) fluorescence and a cationic fluorescent dye, respectively. In this two-dimensional tissue model, ΔΦm was abolished in cells >500 μm from the oxygen source [the anoxic front (AF)], indicating limitations in diffusional oxygen delivery. This result perfectly matched GFP-determined ΔO2. In cells pretreated with dimethyloxaloylglycine (DMOG), a prolyl hydroxylase domain-containing protein (PHD) inhibitor, the AF was expanded to 1,500–2,000 μm from the source. In these cells, tissue ΔO2 was substantially decreased, indicating that PHD pathway activation suppressed mitochondrial respiration. The expansion of the AF and the reduction of ΔO2 were much more prominent in a cancer cell line (Hep3B) than in the equivalent fibroblast-like cell line (COS-7). Hence, the results indicate that PHD pathway-activated cells can sustain ΔΦm, despite significantly decreased electron flux to complex IV. Complex II inhibition abolished the effect of DMOG in expanding the AF, although tissue ΔO2 remained shallow. Separate experiments demonstrated that complex II plays a substantial role in sustaining ΔΦm in DMOG-pretreated Hep3B cells with complex III inhibition. From these results, we conclude that PHD pathway activation can sustain ΔΦm in an otherwise anoxic microenvironment by decreasing tissue ΔO2 while activating oxygen-independent electron transport in mitochondria.


Zygote ◽  
2019 ◽  
Vol 27 (4) ◽  
pp. 203-213 ◽  
Author(s):  
Anima Tripathi ◽  
Vivek Pandey ◽  
A.N. Sahu ◽  
Alok K. Singh ◽  
Pawan K. Dubey

SummaryThe present study investigated if the presence of encircling granulosa cells protected against di(2-ethylhexyl)phthalate (DEHP)-induced oxidative stress in rat oocytes cultured in vitro. Denuded oocytes and cumulus–oocyte complexes (COCs) were treated with or without various doses of DEHP (0.0, 25.0, 50.0, 100, 200, 400 and 800 μM) in vitro. Morphological apoptotic changes, levels of oxidative stress and reactive oxygen species (ROS), mitochondrial membrane potential, and expression levels of apoptotic markers (Bcl2, Bax, cytochrome c) were analyzed. Our results showed that DEHP induced morphological apoptotic changes in a dose-dependent manner in denuded oocytes cultured in vitro. The effective dose of DEHP (400 µg) significantly (P>0.05) increased oxidative stress by elevating ROS levels and the mitochondrial membrane potential with higher mRNA expression and protein levels of apoptotic markers (Bax, cytochrome c). Encircling granulosa cells protected oocytes from DEHP-induced morphological changes, increased oxidative stress and ROS levels, as well as increased expression of apoptotic markers. Taken together our data suggested that encircling granulosa cells protected oocytes against DEHP-induced apoptosis and that the presence of granulosa cells could act positively towards the survival of oocytes under in vitro culture conditions and may be helpful during assisted reproductive technique programmes.


2005 ◽  
Vol 102 (6) ◽  
pp. 1147-1157 ◽  
Author(s):  
Torsten Loop ◽  
David Dovi-Akue ◽  
Michael Frick ◽  
Martin Roesslein ◽  
Lotti Egger ◽  
...  

Background Volatile anesthetics modulate lymphocyte function during surgery, and this compromises postoperative immune competence. The current work was undertaken to examine whether volatile anesthetics induce apoptosis in human T lymphocytes and what apoptotic signaling pathway might be used. Methods Effects of sevoflurane, isoflurane, and desflurane were studied in primary human CD3 T lymphocytes and Jurkat T cells in vitro. Apoptosis and mitochondrial membrane potential were assessed using flow cytometry after green fluorescent protein-annexin V and DiOC6-fluorochrome staining. Activity and proteolytic processing of caspase 3 was measured by cleaving of the fluorogenic effector caspase substrate Ac-DEVD-AMC and by anti-caspase-3 Western blotting. Release of mitochondrial cytochrome c was studied after cell fractionation using anti-cytochrome c Western blotting and enzyme-linked immunosorbent assays. Results Sevoflurane and isoflurane induced apoptosis in human T lymphocytes in a dose-dependent manner. By contrast, desflurane did not exert any proapoptotic effects. The apoptotic signaling pathway used by sevoflurane involved disruption of the mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. In addition, the authors observed a proteolytic cleavage of the inactive p32 procaspase 3 to the active p17 fragment, increased caspase-3-like activity, and cleavage of the caspase-3 substrate poly-ADP-ribose-polymerase. Sevoflurane-induced apoptosis was blocked by the general caspase inhibitor Z-VAD.fmk. Death signaling was not mediated via the Fas/CD95 receptor pathway because neither anti-Fas/CD95 receptor antagonism nor FADD deficiency or caspase-8 deficiency were able to attenuate sevoflurane-mediated apoptosis. Conclusion Sevoflurane and isoflurane induce apoptosis in T lymphocytes via increased mitochondrial membrane permeability and caspase-3 activation, but independently of death receptor signaling.


Sign in / Sign up

Export Citation Format

Share Document