scholarly journals WUSCHEL-related homeobox1 (WOX1) regulates vein patterning and leaf size in Cucumis sativus

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Hu Wang ◽  
Huanhuan Niu ◽  
Chuang Li ◽  
Guoyan Shen ◽  
Xiaofeng Liu ◽  
...  

Abstract In plants, WUSCHEL-related homeobox1 (WOX1) homologs promote lamina mediolateral outgrowth. However, the downstream components linking WOX1 and lamina development remain unclear. In this study, we revealed the roles of WOX1 in palmate leaf expansion in cucumber (Cucumis sativus). A cucumber mango fruit (mf) mutant, resulting from truncation of a WOX1-type protein (CsWOX1), displayed abnormal lamina growth and defects in the development of secondary and smaller veins. CsWOX1 was expressed in the middle mesophyll and leaf margins and rescued defects of the Arabidopsis wox1 prs double mutant. Transcriptomic analysis revealed that genes involved in auxin polar transport and auxin response were highly associated with leaf development. Analysis of the cucumber mf rl (round leaf) double mutant revealed that CsWOX1 functioned in vein development via PINOID (CsPID1)-controlled auxin transport. Overexpression of CsWOX1 in cucumber (CsWOX1-OE) affected vein patterning and produced ‘butterfly-shaped’ leaves. CsWOX1 physically interacted with CsTCP4a, which may account for the abnormal lamina development in the mf mutant line and the smaller leaves in the CsWOX1-OE plants. Our findings demonstrated that CsWOX1 regulates cucumber leaf vein development by modulating auxin polar transport; moreover, CsWOX1 regulates leaf size by controlling CIN-TCP genes.

2013 ◽  
Vol 35 (7) ◽  
pp. 2251-2258 ◽  
Author(s):  
Junichi Ueda ◽  
Yuta Toda ◽  
Kiyotaka Kato ◽  
Yuichi Kuroda ◽  
Tsukasa Arai ◽  
...  

1991 ◽  
Vol 3 (7) ◽  
pp. 677 ◽  
Author(s):  
Kiyotaka Okada ◽  
Junichi Ueda ◽  
Masako K. Komaki ◽  
Callum J. Bell ◽  
Yoshiro Shimura

2017 ◽  
Vol 114 (36) ◽  
pp. E7641-E7649 ◽  
Author(s):  
Riccardo Di Mambro ◽  
Micol De Ruvo ◽  
Elena Pacifici ◽  
Elena Salvi ◽  
Rosangela Sozzani ◽  
...  

In multicellular organisms, a stringent control of the transition between cell division and differentiation is crucial for correct tissue and organ development. In the Arabidopsis root, the boundary between dividing and differentiating cells is positioned by the antagonistic interaction of the hormones auxin and cytokinin. Cytokinin affects polar auxin transport, but how this impacts the positional information required to establish this tissue boundary, is still unknown. By combining computational modeling with molecular genetics, we show that boundary formation is dependent on cytokinin’s control on auxin polar transport and degradation. The regulation of both processes shapes the auxin profile in a well-defined auxin minimum. This auxin minimum positions the boundary between dividing and differentiating cells, acting as a trigger for this developmental transition, thus controlling meristem size.


2000 ◽  
Vol 14 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Toru Shimazu ◽  
Kensuke Miyamoto ◽  
Takayuki Hoson ◽  
Seiichiro Kamisaka ◽  
Junichi Ueda

2000 ◽  
Vol 14 (2) ◽  
pp. 47-57 ◽  
Author(s):  
Junichi Ueda ◽  
Kensuke Miyamoto ◽  
Tomokazu Yuda ◽  
Tomoki Hoshino ◽  
Keiko Sato ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 242
Author(s):  
Mathias Schuetz ◽  
Mario Fidanza ◽  
Jim Mattsson

Based on mutant phenotypes the MONOPTEROS (MP)/Auxin Response Factor 5 (ARF5) gene acts in several developmental processes including leaf vein development. Since overlapping functions among ARF genes are common, we assessed the related ARF 3-8 and 19 genes for potential overlap in expression during vein development using in-situ hybridization. Like MP/ARF5, ARF3 was expressed in preprocambial and procambial cells. ARF7 was also expressed in procambial cells, close to and during vein differentiation. ARF19 was expressed in differentiating vessel elements. To assess if genes with vein expression have overlapping functions, double mutants were generated. While arf3, 5 and 7 mutants formed leaves normally, double mutant combinations of mp/arf5 with arf3 or arf7 resulted in a breakdown of leaf formation. Instead, novel structures not present in any of the single mutants formed. The results implicate ARF3 and ARF7 in rosette leaf formation and suggest that their functions overlap and act in parallel with MP/ARF5 in this process. The observed vascular expression patterns suggest unique functions (ARF7 and 19) and potentially overlapping functions (ARF3 and 5) in vein development. Since arf3 arf5 double mutants do not form leaves, assessment of their potential combined action in vein development will require the use of conditional mutants.


2013 ◽  
Vol 66 (2) ◽  
pp. 21-28 ◽  
Author(s):  
Kensuke Miyamoto ◽  
Agnieszka Marasek-Ciołakowska ◽  
Justyna Góraj ◽  
Elżbieta Węgrzynowicz-Lesiak ◽  
Junichi Ueda ◽  
...  

Morphactin, methyl 2-chloro-9-hydroxyfluorene-9-carboxylate (IT 3456), is a synthetic growth regulator with a unique action affecting various morphogenetic and physiological processes in plants, and has been characterized as a specific inhibitor of auxin polar transport. Morphactin applied at the last internode in decapitated shoots of <em>Bryophyllum calycinum</em> substantially stimulated elongation and thickening of the internode. Benzyladenine applied alone little affected stem elongation and thickening. Simultaneous application of benzyladenine and morphactin showed a synergistic effect on thickening, while it did not on elongation. These results suggest that morphactin translocated basipetally from the top of the treated internode inhibits auxin polar transport from the internode, resulting in the accumulation of endogenous auxin for elongation and thickening in the treated internode of decapitated shoots of <em>Bryophyllum calycinum</em>.


Sign in / Sign up

Export Citation Format

Share Document