scholarly journals Research advances in and prospects of ornamental plant genomics

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Tangchun Zheng ◽  
Ping Li ◽  
Lulu Li ◽  
Qixiang Zhang

AbstractThe term ‘ornamental plant’ refers to all plants with ornamental value, which generally have beautiful flowers or special plant architectures. China is rich in ornamental plant resources and known as the “mother of gardens”. Genomics is the science of studying genomes and is useful for carrying out research on genome evolution, genomic variations, gene regulation, and important biological mechanisms based on detailed genome sequence information. Due to the diversity of ornamental plants and high sequencing costs, the progress of genome research on ornamental plants has been slow for a long time. With the emergence of new sequencing technologies and a reduction in costs since the whole-genome sequencing of the first ornamental plant (Prunus mume) was completed in 2012, whole-genome sequencing of more than 69 ornamental plants has been completed in <10 years. In this review, whole-genome sequencing and resequencing of ornamental plants will be discussed. We provide analysis with regard to basic data from whole-genome studies of important ornamental plants, the regulation of important ornamental traits, and application prospects.

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Jacqueline King ◽  
Anne Pohlmann ◽  
Kamila Dziadek ◽  
Martin Beer ◽  
Kerstin Wernike

Abstract Background As a global ruminant pathogen, bovine viral diarrhea virus (BVDV) is responsible for the disease Bovine Viral Diarrhea with a variety of clinical presentations and severe economic losses worldwide. Classified within the Pestivirus genus, the species Pestivirus A and B (syn. BVDV-1, BVDV-2) are genetically differentiated into 21 BVDV-1 and four BVDV-2 subtypes. Commonly, the 5’ untranslated region and the Npro protein are utilized for subtyping. However, the genetic variability of BVDV leads to limitations in former studies analyzing genome fragments in comparison to a full-genome evaluation. Results To enable rapid and accessible whole-genome sequencing of both BVDV-1 and BVDV-2 strains, nanopore sequencing of twelve representative BVDV samples was performed on amplicons derived through a tiling PCR procedure. Covering a multitude of subtypes (1b, 1d, 1f, 2a, 2c), sample matrices (plasma, EDTA blood and ear notch), viral loads (Cq-values 19–32) and species (cattle and sheep), ten of the twelve samples produced whole genomes, with two low titre samples presenting 96 % genome coverage. Conclusions Further phylogenetic analysis of the novel sequences emphasizes the necessity of whole-genome sequencing to identify novel strains and supplement lacking sequence information in public repositories. The proposed amplicon-based sequencing protocol allows rapid, inexpensive and accessible obtainment of complete BVDV genomes.


2018 ◽  
Author(s):  
Mark T. W. Ebbert ◽  
Stefan Farrugia ◽  
Jonathon Sens ◽  
Karen Jansen-West ◽  
Tania F. Gendron ◽  
...  

AbstractBackground: Many neurodegenerative diseases are caused by nucleotide repeat expansions, but most expansions, like the C9orf72 ‘GGGGCC’ (G4C2) repeat that causes approximately 5-7% of all amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) cases, are too long to sequence using short-read sequencing technologies. It is unclear whether long-read sequencing technologies can traverse these long, challenging repeat expansions. Here, we demonstrate that two long-read sequencing technologies, Pacific Biosciences’ (PacBio) and Oxford Nanopore Technologies’ (ONT), can sequence through disease-causing repeats cloned into plasmids, including the FTD/ALS-causing G4C2 repeat expansion. We also report the first long-read sequencing data characterizing the C9orf72 G4C2 repeat expansion at the nucleotide level in two symptomatic expansion carriers using PacBio whole-genome sequencing and a no-amplification (No-Amp) targeted approach based on CRISPR/Cas9.Results: Both the PacBio and ONT platforms successfully sequenced through the repeat expansions in plasmids. Throughput on the MinlON was a challenge for whole-genome sequencing; we were unable to attain reads covering the human C9orf72 repeat expansion using 15 flow cells. We obtained 8x coverage across the C9orf72 locus using the PacBio Sequel, accurately reporting the unexpanded allele at eight repeats, and reading through the entire expansion with 1324 repeats (7941 nucleotides). Using the No-Amp targeted approach, we attained >800x coverage and were able to identify the unexpanded allele, closely estimate expansion size, and assess nucleotide content in a single experiment. We estimate the individual’s repeat region was >99% G4C2 content, though we cannot rule out small interruptions.Conclusions: Our findings indicate that long-read sequencing is well suited to characterizing known repeat expansions, and for discovering new disease-causing, disease-modifying, or risk-modifying repeat expansions that have gone undetected with conventional short-read sequencing. The PacBio No-Amp targeted approach may have future potential in clinical and genetic counseling environments. Larger and deeper long-read sequencing studies in C9orf72 expansion carriers will be important to determine heterogeneity and whether the repeats are interrupted by non-G4C2 content, potentially mitigating or modifying disease course or age of onset, as interruptions are known to do in other repeat-expansion disorders. These results have broad implications across all diseases where the genetic etiology remains unclear.


2021 ◽  
Vol 12 ◽  
Author(s):  
Annika Brinkmann ◽  
Sophie-Luisa Ulm ◽  
Steven Uddin ◽  
Sophie Förster ◽  
Dominique Seifert ◽  
...  

Since the emergence of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in December 2019, the scientific community has been sharing data on epidemiology, diagnostic methods, and whole-genomic sequences almost in real time. The latter have already facilitated phylogenetic analyses, transmission chain tracking, protein modeling, the identification of possible therapeutic targets, timely risk assessment, and identification of novel variants. We have established and evaluated an amplification-based approach for whole-genome sequencing of SARS-CoV-2. It can be used on the miniature-sized and field-deployable sequencing device Oxford Nanopore MinION, with sequencing library preparation time of 10 min. We show that the generation of 50,000 total reads per sample is sufficient for a near complete coverage (&gt;90%) of the SARS-CoV-2 genome directly from patient samples even if virus concentration is low (Ct 35, corresponding to approximately 5 genome copies per reaction). For patient samples with high viral load (Ct 18–24), generation of 50,000 reads in 1–2 h was shown to be sufficient for a genome coverage of &gt;90%. Comparison to Illumina data reveals an accuracy that suffices to identify virus mutants. AmpliCoV can be applied whenever sequence information on SARS-CoV-2 is required rapidly, for instance for the identification of circulating virus mutants.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Farah Ghieh ◽  
Anne-Laure Barbotin ◽  
Clara Leroy ◽  
François Marcelli ◽  
Nelly Swierkowsky-Blanchard ◽  
...  

AbstractWhereas the initially strategy for the genetic analysis of male infertility was based on a candidate gene approach, the development of next-generation sequencing technologies (such as whole-exome sequencing (WES)) provides an opportunity to analyze many genes in a single procedure. In order to recommend WES or whole-genome sequencing (WGS) after genetic counselling, an objective evaluation of the current genetic screening strategy for male infertility is required, even if, at present, we have to take into consideration the complexity of such a procedure, not discussed in this commentary.


2021 ◽  
Author(s):  
Klaudia Chrzastek ◽  
Chandana Tennakoon ◽  
Dagmara Bialy ◽  
Graham L Freimanis ◽  
John Flannery ◽  
...  

Background: Non-targeted whole genome sequencing is a powerful tool to comprehensively identify constituents of microbial communities in a sample. There is no need to direct the analysis to any identification before sequencing which can decrease the introduction of bias and false negatives results. It also allows the assessment of genetic aberrations in the genome (e.g., single nucleotide variants, deletions, insertions and copy number variants) including in noncoding protein regions. Methods: The performance of four different random priming amplification methods to recover RNA viral genetic material of SARS-CoV-2 were compared in this study. In method 1 (H-P) the reverse transcriptase (RT) step was performed with random hexamers whereas in methods 2-4 RT incorporating an octamer primer with a known tag. In methods 1 and 2 (K-P) sequencing was applied on material derived from the RT-PCR step, whereas in methods 3 (SISPA) and 4 (S-P) an additional amplification was incorporated before sequencing. Results: The SISPA method was the most effective and efficient method for non-targeted/random priming whole genome sequencing of COVID that we tested. The SISPA method described in this study allowed for whole genome assembly of SARS-CoV-2 and influenza A(H1N1)pdm09 in mixed samples. We determined the limit of detection and characterization of SARS-CoV-2 virus which was 103 pfu/ml (Ct, 22.4) for whole genome assembly and 101 pfu/ml (Ct, 30) for metagenomics detection. Conclusions: The SISPA method is predominantly useful for obtaining genome sequences from RNA viruses or investigating complex clinical samples as no prior sequence information is needed. It might be applied to monitor genomic virus changes, virus evolution and can be used for fast metagenomics detection or to assess the general picture of different pathogens within the sample.


2017 ◽  
Vol 30 (4) ◽  
pp. 1015-1063 ◽  
Author(s):  
Scott Quainoo ◽  
Jordy P. M. Coolen ◽  
Sacha A. F. T. van Hijum ◽  
Martijn A. Huynen ◽  
Willem J. G. Melchers ◽  
...  

SUMMARY Outbreaks of multidrug-resistant bacteria present a frequent threat to vulnerable patient populations in hospitals around the world. Intensive care unit (ICU) patients are particularly susceptible to nosocomial infections due to indwelling devices such as intravascular catheters, drains, and intratracheal tubes for mechanical ventilation. The increased vulnerability of infected ICU patients demonstrates the importance of effective outbreak management protocols to be in place. Understanding the transmission of pathogens via genotyping methods is an important tool for outbreak management. Recently, whole-genome sequencing (WGS) of pathogens has become more accessible and affordable as a tool for genotyping. Analysis of the entire pathogen genome via WGS could provide unprecedented resolution in discriminating even highly related lineages of bacteria and revolutionize outbreak analysis in hospitals. Nevertheless, clinicians have long been hesitant to implement WGS in outbreak analyses due to the expensive and cumbersome nature of early sequencing platforms. Recent improvements in sequencing technologies and analysis tools have rapidly increased the output and analysis speed as well as reduced the overall costs of WGS. In this review, we assess the feasibility of WGS technologies and bioinformatics analysis tools for nosocomial outbreak analyses and provide a comparison to conventional outbreak analysis workflows. Moreover, we review advantages and limitations of sequencing technologies and analysis tools and present a real-world example of the implementation of WGS for antimicrobial resistance analysis. We aimed to provide health care professionals with a guide to WGS outbreak analysis that highlights its benefits for hospitals and assists in the transition from conventional to WGS-based outbreak analysis.


2021 ◽  
Vol 9 (5) ◽  
pp. 955
Author(s):  
Linda Chui ◽  
Christina Ferrato ◽  
Vincent Li ◽  
Sara Christianson

Salmonella surveillance and outbreak management is a key function of public health. Laboratories are shifting from antigenic serotype determination to molecular methods including microarray or whole genome sequencing technologies. The objective of this study was to compare the Check&Trace Salmonella™ DNA microarray (CTS), a commercially available assay with the Salmonella in silico typing resource (SISTR), which uses whole genome sequencing technology for serotyping clinical Salmonella strains in Alberta, Canada, collected over an 18-month period. A high proportion of isolates (96.3%) were successfully typed by both systems. SISTR is a powerful tool for laboratories which already have a WGS infrastructure in place, whereas smaller laboratories can benefit from a commercial microarray system and reduce the processing cost per isolate compared to traditional serotyping.


Sign in / Sign up

Export Citation Format

Share Document