scholarly journals N-glucosyltransferase GbNGT1 from ginkgo complements the auxin metabolic pathway

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Qinggang Yin ◽  
Jing Zhang ◽  
Shuhui Wang ◽  
Jintang Cheng ◽  
Han Gao ◽  
...  

AbstractAs auxins are among the most important phytohormones, the regulation of auxin homeostasis is complex. Generally, auxin conjugates, especially IAA glucosides, are predominant at high auxin levels. Previous research on terminal glucosylation focused mainly on the O-position, while IAA-N-glucoside and IAA-Asp-N-glucoside have been neglected since their discovery in 2001. In our study, IAA-Asp-N-glucoside was found to be specifically abundant (as high as 4.13 mg/g) in the seeds of 58 ginkgo cultivars. Furthermore, a novel N-glucosyltransferase, termed GbNGT1, was identified via differential transcriptome analysis and in vitro enzymatic testing. It was found that GbNGT1 could catalyze IAA-Asp and IAA to form their corresponding N-glucosides. The enzyme was demonstrated to possess a specific catalytic capacity toward the N-position of the IAA-amino acid or IAA from 52 substrates. Docking and site-directed mutagenesis of this enzyme confirmed that the E15G mutant could almost completely abolish its N-glucosylation ability toward IAA-Asp and IAA in vitro and in vivo. The IAA modification of GbNGT1 and GbGH3.5 was verified by transient expression assay in Nicotiana benthamiana. The effect of GbNGT1 on IAA distribution promotes root growth in Arabidopsis thaliana.

2020 ◽  
Author(s):  
Qinggang Yin ◽  
Jing Zhang ◽  
Shuhui Wang ◽  
Jintang Cheng ◽  
Han Gao ◽  
...  

AbstractAs a group of the most important phytohormone, auxin homeostasis is regulated in a complex manner. Generally, auxin conjugations especially IAA glucosides are dominant on high auxin level conditions. Former terminal glucosylation researches mainly focus on O-position, while IAA-N-glucoside or IAA-Asp-N-glucoside has been neglected since their found in 2001. In our study, IAA-Asp-N-glucoside was firstly found specifically abundant (as high as 4.13 mg/g) in ginkgo seeds of 58 cultivars from Ginkgo Resource Nursery built in 1990. Furthermore, a novel N-glucosyltransferase GbNGT1, which could catalyze IAA-Asp and IAA to form their corresponding N-glucoside, was identified through differential transcriptome analysis and in vitro enzymatic test. The enzyme was demonstrated to possess specific catalyze capacity toward the N-position of IAA-amino acid or IAA among 52 substrates, and was typical of acid tolerance, metal ion independence and high temperature sensitivity. Docking and site-directed mutagenesis of this enzyme confirmed that E15G mutant could almost abolish enzyme catalytic activity towards IAA-Asp and IAA in vitro and in vivo. The IAA modification of GbNGT1 and GbGH3.5 was verified by transient expression assay in Nicotiana benthamiana. In conclusion, our results complement the terminal metabolic pathway of auxin, and the specific catalytic function of GbNGT1 towards IAA-amino acid provide a new way to biosynthesis indole-amide compounds.HighlightThe N-glucosylation of IAA or IAA-amino acids in auxin metabolism had been neglected over decades, our work for GbNGT1 redeems the missing chain of auxin metabolic pathway.


2017 ◽  
Vol 399 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Monika B. Dolinska ◽  
Yuri V. Sergeev

AbstractTyrosinase, a melanosomal glycoenzyme, catalyzes initial steps of the melanin biosynthesis. While glycosylation was previously studiedin vivo, we present three recombinant mutant variants of human tyrosinase, which were obtained using multiple site-directed mutagenesis, expressed in insect larvae, purified and characterized biochemically. The mutagenesis demonstrated the reduced protein expression and enzymatic activity due to possible loss of protein stability and protein degradation. However, the complete deglycosylation of asparagine residuesin vitro, including the residue in position 371, interrupts tyrosinase function, which is consistent with a melanin loss in oculocutaneous albinism type 1 (OCA1) patients.


2001 ◽  
Vol 183 (1) ◽  
pp. 250-256 ◽  
Author(s):  
Yan Ma ◽  
Paul W. Ludden

ABSTRACT Dinitrogenase reductase is posttranslationally regulated by dinitrogenase reductase ADP-ribosyltransferase (DRAT) via ADP-ribosylation of the arginine 101 residue in some bacteria.Rhodospirillum rubrum strains in which the arginine 101 of dinitrogenase reductase was replaced by tyrosine, phenylalanine, or leucine were constructed by site-directed mutagenesis of thenifH gene. The strain containing the R101F form of dinitrogenase reductase retains 91%, the strain containing the R101Y form retains 72%, and the strain containing the R101L form retains only 28% of in vivo nitrogenase activity of the strain containing the dinitrogenase reductase with arginine at position 101. In vivo acetylene reduction assays, immunoblotting with anti-dinitrogenase reductase antibody, and [adenylate-32P]NAD labeling experiments showed that no switch-off of nitrogenase activity occurred in any of the three mutants and no ADP-ribosylation of altered dinitrogenase reductases occurred either in vivo or in vitro. Altered dinitrogenase reductases from strains UR629 (R101Y) and UR630 (R101F) were purified to homogeneity. The R101F and R101Y forms of dinitrogenase reductase were able to form a complex with DRAT that could be chemically cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. The R101F form of dinitrogenase reductase and DRAT together were not able to cleave NAD. This suggests that arginine 101 is not critical for the binding of DRAT to dinitrogenase reductase but that the availability of arginine 101 is important for NAD cleavage. Both DRAT and dinitrogenase reductase can be labeled by [carbonyl-14C]NAD individually upon UV irradiation, but most 14C label is incorporated into DRAT when both proteins are present. The ability of R101F dinitrogenase reductase to be labeled by [carbonyl-14C]NAD suggested that Arg 101 is not absolutely required for NAD binding.


2003 ◽  
Vol 185 (20) ◽  
pp. 6205-6208 ◽  
Author(s):  
Sheena McGowan ◽  
Jennifer R. O'Connor ◽  
Jackie K. Cheung ◽  
Julian I. Rood

ABSTRACT The response regulator VirR and its cognate sensor histidine kinase, VirS, are responsible for toxin gene regulation in the human pathogen Clostridium perfringens. The C-terminal domain of VirR (VirRc) contains the functional FxRxHrS motif, which is involved in DNA binding and is conserved in many regulatory proteins. VirRc was cloned, purified, and shown by in vivo and in vitro studies to comprise an independent DNA binding domain. Random and site-directed mutagenesis was used to identify further amino acids that were required for the functional integrity of the protein. Random mutagenesis identified a unique residue, Met-172, that was required for biological function. Site-directed mutagenesis of the SKHR motif (amino acids 216 to 219) revealed that these residues were also required for biological activity. Analysis of the mutated proteins indicated that they were unable to bind to the DNA target with the same efficiency as the wild-type protein.


2013 ◽  
Vol 57 (3) ◽  
pp. 1379-1384 ◽  
Author(s):  
Cindy Vavro ◽  
Samiul Hasan ◽  
Heather Madsen ◽  
Joseph Horton ◽  
Felix DeAnda ◽  
...  

ABSTRACTThe majority of HIV-1 integrase amino acid sites are highly conserved, suggesting that most are necessary to carry out the critical structural and functional roles of integrase. We analyzed the 34 most variable sites in integrase (>10% variability) and showed that prevalent polymorphic amino acids at these positions did not affect susceptibility to the integrase inhibitor dolutegravir (S/GSK1349572), as demonstrated bothin vitro(in site-directed mutagenesis studies) andin vivo(in a phase IIa study of dolutegravir monotherapy in HIV-infected individuals). Ongoing clinical trials will provide additional data on the virologic activity of dolutegravir across subject viruses with and without prevalent polymorphic substitutions.


1998 ◽  
Vol 66 (8) ◽  
pp. 3626-3634 ◽  
Author(s):  
Eshwar Mahenthiralingam ◽  
Britt-Inger Marklund ◽  
Lucy A. Brooks ◽  
Debbie A. Smith ◽  
Gregory J. Bancroft ◽  
...  

ABSTRACT The mycobacterial 19-kilodalton antigen (19Ag) is a highly expressed, surface-associated glycolipoprotein which is immunodominant in infected patients and has little homology with other known proteins. To investigate the pathogenic significance of the 19Ag, site-directed mutagenesis of the Mycobacterium intracellulare 19Ag gene was carried out by using a suicide vector-based strategy. Allelic replacement of the 19Ag gene of a mouse-avirulent M. intracellulare strain, 1403, was achieved by double-crossover homologous recombination with a gentamicin resistance gene-mutated allele. Unfortunately, an isogenic 19Ag was not achievable in the mouse-virulent strain, D673. However, a 19Ag mutant was successfully constructed in M. intracellulare FM1, a chemically mutagenized derivative of strain D673. FM1 was more amenable to genetic manipulation and susceptible to site-directed mutagenesis of the 19Ag gene yet retained the virulent phenotype of the parental strain. No deleterious effects of 19Ag gene mutation were observed during in vitro growth ofM. intracellulare. Virulence assessment of the isogenic 19Ag mutants in a mouse infection model demonstrated that the antigen plays no essential role in the growth of M. intracellularein vivo. Site-directed mutagenesis of the 19Ag gene demonstrated that it plays no essential role in growth and pathogenicity of M. intracellulare; however, the exact nature of its biological function remains unknown.


1987 ◽  
Author(s):  
N Haigwood ◽  
E-P Pâques ◽  
G Mullenbach ◽  
G Moore ◽  
L DesJardin ◽  
...  

The clinical relevance of tissue-plasminogen-activator (t-PA) as a potent thrombolytic agent has recently been established. It has however been recognized that t-PA does not fulfill all conditions required for an ideal thrombolytic pharmaceutical agent; for example, its physiological stability and its short half life in vivo necessitate the use of very large clinical doses. We have therefore attempted to develop novel mutant t-PA proteins with improved properties by creating mutants by site-directed mutagenesis in M13 bacteriophage. Seventeen mutants were designed, cloned, and expressed in CHO cells. Modifications were of three types: alterations to glycosylation sites, truncations of the N- or C-termini, and amino acids changes at the cleavage site utilized to generate the two chain form of t-PA. The mutant proteins were analyzed in vitro for specific activity, fibrin dependence of the plasminogen activation, fibrin affinity, and susceptibility to inhibition by PAI.In brief, the results are: 1) some unglycosylated and partially glycosylated molecules obtained by mutagenesis are characterized by several-fold higher specific activity than wild type t-PA; 2) truncation at the C-terminus by three amino acids yields a molecule with increased fibrin specificity; 3) mutations at the cleavage site lead zo a decreased inhibition by PAI; and 4) recombinants of these genes have been constructed and the proteins were shown to possess multiple improved properties. The use of site directed mutagenesis has proved to be a powerful instrument to modulate the biological properties of t-PA.


Sign in / Sign up

Export Citation Format

Share Document