scholarly journals The MADS-box gene FveSEP3 plays essential roles in flower organogenesis and fruit development in woodland strawberry

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mengting Pi ◽  
Shaoqiang Hu ◽  
Laichao Cheng ◽  
Ruhan Zhong ◽  
Zhuoying Cai ◽  
...  

AbstractFlower and fruit development are two key steps for plant reproduction. The ABCE model for flower development has been well established in model plant species; however, the functions of ABCE genes in fruit crops are less understood. In this work, we identified an EMS mutant named R27 in woodland strawberry (Fragaria vesca), showing the conversion of petals, stamens, and carpels to sepaloid organs in a semidominant inheritance fashion. Mapping by sequencing revealed that the class E gene homolog FveSEP3 (FvH4_4g23530) possessed the causative mutation in R27 due to a G to E amino acid change in the conserved MADS domain. Additional fvesep3CR mutants generated by CRISPR/Cas9 displayed similar phenotypes to fvesep3-R27. Overexpressing wild-type or mutated FveSEP3 in Arabidopsis suggested that the mutation in R27 might cause a dominant-negative effect. Further analyses indicated that FveSEP3 physically interacted with each of the ABCE proteins in strawberry. Moreover, both R27 and fvesep3CR mutants exhibited parthenocarpic fruit growth and delayed fruit ripening. Transcriptome analysis revealed that both common and specific differentially expressed genes were identified in young fruit at 6–7 days post anthesis (DPA) of fvesep3 and pollinated wild type when compared to unpollinated wild type, especially those in the auxin pathway, a key hormone regulating fruit set in strawberry. Together, we provided compelling evidence that FveSEP3 plays predominant E functions compared to other E gene homologs in flower development and that FveSEP3 represses fruit growth in the absence of pollination and promotes fruit ripening in strawberry.

2018 ◽  
Vol 115 (49) ◽  
pp. E11542-E11550 ◽  
Author(s):  
Xiong Liao ◽  
Mengsi Li ◽  
Bin Liu ◽  
Miaoling Yan ◽  
Xiaomin Yu ◽  
...  

Fruit growth and ripening are controlled by multiple phytohormones. How these hormones coordinate and interact with each other to control these processes at the molecular level is unclear. We found in the early stages of Fragaria vesca (woodland strawberry) fruit development, auxin increases both widths and lengths of fruits, while gibberellin [gibberellic acid (GA)] mainly promotes their longitudinal elongation. Auxin promoted GA biosynthesis and signaling by activating GA biosynthetic and signaling genes, suggesting auxin function is partially dependent on GA function. To prevent the repressive effect of abscisic acid (ABA) on fruit growth, auxin and GA suppressed ABA accumulation during early fruit development by activating the expression of FveCYP707A4a encoding cytochrome P450 monooxygenase that catalyzes ABA catabolism. At the onset of fruit ripening, both auxin and GA levels decreased, leading to a steep increase in the endogenous level of ABA that drives fruit ripening. ABA repressed the expression of FveCYP707A4a but promoted that of FveNCED, a rate-limiting step in ABA biosynthesis. Accordingly, altering FveCYP707A4a expression changed the endogenous ABA levels and affected FveNCED expression. Hence, ABA catabolism and biosynthesis are tightly linked by feedback and feedforward loops to limit ABA contents for fruit growth and to quickly increase ABA contents for the onset of fruit ripening. These results indicate that FveCYP707A4a not only regulates ABA accumulation but also provides a hub to coordinate fruit size and ripening times by relaying auxin, GA, and ABA signals.


Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3417-3423 ◽  
Author(s):  
Marina Bousquet ◽  
Cyril Broccardo ◽  
Cathy Quelen ◽  
Fabienne Meggetto ◽  
Emilienne Kuhlein ◽  
...  

Abstract We report a novel t(7;9)(q11;p13) translocation in 2 patients with B-cell acute lymphoblastic leukemia (B-ALL). By fluorescent in situ hybridization and 3′ rapid amplification of cDNA ends, we showed that the paired box domain of PAX5 was fused with the elastin (ELN) gene. After cloning the full-length cDNA of the chimeric gene, confocal microscopy of transfected NIH3T3 cells and Burkitt lymphoma cells (DG75) demonstrated that PAX5-ELN was localized in the nucleus. Chromatin immunoprecipitation clearly indicated that PAX5-ELN retained the capability to bind CD19 and BLK promoter sequences. To analyze the functions of the chimeric protein, HeLa cells were cotransfected with a luc-CD19 construct, pcDNA3-PAX5, and with increasing amounts of pcDNA3-PAX5-ELN. Thus, in vitro, PAX5-ELN was able to block CD19 transcription. Furthermore, real-time quantitative polymerase chain reaction (RQ-PCR) experiments showed that PAX5-ELN was able to affect the transcription of endogenous PAX5 target genes. Since PAX5 is essential for B-cell differentiation, this translocation may account for the blockage of leukemic cells at the pre–B-cell stage. The mechanism involved in this process appears to be, at least in part, through a dominant-negative effect of PAX5-ELN on the wild-type PAX5 in a setting ofPAX5 haploinsufficiency.


2021 ◽  
pp. 002203452199662
Author(s):  
J.T. Chen ◽  
C.H. Lin ◽  
H.W. Huang ◽  
Y.P. Wang ◽  
P.C. Kao ◽  
...  

Hereditary gingival fibromatosis (HGF) is a rare genetic disorder featured by nonsyndromic pathological overgrowth of gingiva. The excessive gingival tissues can cause dental, masticatory, and phonetic problems, which impose severe functional and esthetic burdens on affected individuals. Due to its high recurrent rate, patients with HGF have to undergo repeated surgical procedures of gingival resection, from childhood to adulthood, which significantly compromises their quality of life. Unraveling the genetic etiology and molecular pathogenesis of HGF not only gains insight into gingival physiology and homeostasis but also opens avenues for developing potential therapeutic strategies for this disorder. Recently, mutations in REST (OMIM *600571), encoding a transcription repressor, were reported to cause HGF (GINGF5; OMIM #617626) in 3 Turkish families. However, the functions of REST in gingival homeostasis and pathogenesis of REST-associated HGF remain largely unknown. In this study, we characterized 2 HGF families and identified 2 novel REST mutations, c.2449C>T (p.Arg817*) and c.2771_2793dup (p.Glu932Lysfs*3). All 5 mutations reported to date are nonsenses or frameshifts in the last exon of REST and would presumably truncate the protein. In vitro reporter gene assays demonstrated a partial or complete loss of repressor activity for these truncated RESTs. When coexpressed with the full-length protein, the truncated RESTs impaired the repressive ability of wild-type REST, suggesting a dominant negative effect. Immunofluorescent studies showed nuclear localization of overexpressed wild-type and truncated RESTs in vitro, indicating preservation of the nuclear localization signal in shortened proteins. Immunohistochemistry demonstrated a comparable pattern of ubiquitous REST expression in both epithelium and lamina propria of normal and HGF gingival tissues despite a reduced reactivity in HGF gingiva. Results of this study confirm the pathogenicity of REST truncation mutations occurring in the last exon causing HGF and suggest the pathosis is caused by an antimorphic (dominant negative) disease mechanism.


1999 ◽  
Vol 114 (5) ◽  
pp. 685-700 ◽  
Author(s):  
Thomas P. Flagg ◽  
Margaret Tate ◽  
Jean Merot ◽  
Paul A. Welling

Mutations in the inward rectifying renal K+ channel, Kir 1.1a (ROMK), have been linked with Bartter's syndrome, a familial salt-wasting nephropathy. One disease-causing mutation removes the last 60 amino acids (332–391), implicating a previously unappreciated domain, the extreme COOH terminus, as a necessary functional element. Consistent with this hypothesis, truncated channels (Kir 1.1a 331X) are nonfunctional. In the present study, the roles of this domain were systematically evaluated. When coexpressed with wild-type subunits, Kir 1.1a 331X exerted a negative effect, demonstrating that the mutant channel is synthesized and capable of oligomerization. Plasmalemma localization of Kir 1.1a 331X green fluorescent protein (GFP) fusion construct was indistinguishable from the GFP–wild-type channel, demonstrating that mutant channels are expressed on the oocyte plasma membrane in a nonconductive or locked-closed conformation. Incremental reconstruction of the COOH terminus identified amino acids 332–351 as the critical residues for restoring channel activity and uncovered the nature of the functional defect. Mutant channels that are truncated at the extreme boundary of the required domain (Kir 1.1a 351X) display marked inactivation behavior characterized by frequent occupancy in a long-lived closed state. A critical analysis of the Kir 1.1a 331X dominant negative effect suggests a molecular mechanism underlying the aberrant closed-state stabilization. Coexpression of different doses of mutant with wild-type subunits produced an intermediate dominant negative effect, whereas incorporation of a single mutant into a tetrameric concatemer conferred a complete dominant negative effect. This identifies the extreme COOH terminus as an important subunit interaction domain, controlling the efficiency of oligomerization. Collectively, these observations provide a mechanistic basis for the loss of function in one particular Bartter's-causing mutation and identify a structural element that controls open-state occupancy and determines subunit oligomerization. Based on the overlapping functions of this domain, we speculate that intersubunit interactions within the COOH terminus may regulate the energetics of channel opening.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2426-2426
Author(s):  
Kyle R Spinler ◽  
Jae-Won Shin ◽  
Dennis E Discher

Abstract Megakaryocytes (MKs) in the marrow extend projections into blood flow and generate platelets under shear. Understanding MK differentiation and platelet production is of broad clinical importance and extends a need to augment platelet numbers in patients. Reversible but sustained inhibition of non-muscle myosin-II (NMM-II) with the drug blebbistatin increases MK polyploidization, proplatelet formation, and membrane flexibility, thereby increasing platelet generation under shear. Using a cone and plate rheometer to apply fluid shear to drug-treated MKs in bulk, platelet-like-particles (PLPs) that are collagen-I responsive can be generated with intermediate shear. The MKs naturally down-regulate NMM-IIA activity through phosphorylation of S1943, but this site proves shear sensitive, consistent with results for human platelets. Using micropipette aspiration of MKs, inhibition of NMM-IIA is found necessary to generate CD41+ fragments that approximate the size of human platelets. Localization of NMM-IIA to the fragments is modulated by S1943 as seen by unique distribution patterns resulting from specific S1943 mutations that can be abrogated by addition of blebbistatin. The approach is extended to clinically relevant mutations associated with May-Hegglin anomaly (MHA) co-expressed with wild type protein to mimic heterozygotes. As with blebbistatin inhibition of myosin, May-Hegglin mutants result in a higher frequency of fragmentation during micropipette aspiration, indicating a dominant negative effect. Immunofluorescence documents abnormal myosin aggregation in cells transfected with May-Hegglin myosin mutations compared to wild type constructs. Finally, peripheral blood from a patient with a D1414N May-Hegglin mutation is cultured to produce megakaryocytes used to support both the micropipette and immunofluorescence results. These findings reveal a phospho-switch in NMM-II, from inactive to active in the terminal stages of platelet-poiesis, and that proper myosin activity is critical to fragment size and number. Disruption of normal activity enhances fragment generation suggesting a novel mechanism in MHA: in particular, MHA thrombocytopenia results in an increased thrombocrit due to abnormally large platelets, which overcompensates for the reduction in platelet number. Disclosures: No relevant conflicts of interest to declare.


2003 ◽  
Vol 14 (8) ◽  
pp. 3400-3413 ◽  
Author(s):  
Christopher J.R. Loewen ◽  
Orson L. Moritz ◽  
Beatrice M. Tam ◽  
David S. Papermaster ◽  
Robert S. Molday

Peripherin-2 is a member of the tetraspanin family of membrane proteins that plays a critical role in photoreceptor outer segment disk morphogenesis. Mutations in peripherin-2 are responsible for various retinal degenerative diseases including autosomal dominant retinitis pigmentosa (ADRP). To identify determinants required for peripherin-2 targeting to disk membranes and elucidate mechanisms underlying ADRP, we have generated transgenic Xenopus tadpoles expressing wild-type and ADRP-linked peripherin-2 mutants as green fluorescent fusion proteins in rod photoreceptors. Wild-type peripherin-2 and P216L and C150S mutants, which assemble as tetramers, targeted to disk membranes as visualized by confocal and electron microscopy. In contrast the C214S and L185P mutants, which form homodimers, but not tetramers, were retained in the rod inner segment. Only the P216L disease mutant induced photoreceptor degeneration. These results indicate that tetramerization is required for peripherin-2 targeting and incorporation into disk membranes. Tetramerization-defective mutants cause ADRP through a deficiency in wild-type peripherin-2, whereas tetramerization-competent P216L peripherin-2 causes ADRP through a dominant negative effect, possibly arising from the introduction of a new oligosaccharide chain that destabilizes disks. Our results further indicate that a checkpoint between the photoreceptor inner and outer segments allows only correctly assembled peripherin-2 tetramers to be incorporated into nascent disk membranes.


2005 ◽  
Vol 18 (2) ◽  
pp. 116-124 ◽  
Author(s):  
Wolfgang Moeder ◽  
Keiko Yoshioka ◽  
Daniel F. Klessig

During the hypersensitive response (HR), plants accumulate reactive oxygen species (ROS) that are likely generated at least in part by an NADPH oxidase similar to that found in mammalian neutrophils. An essential regulator of mammalian NADPH oxidase is the small GTP-binding protein Rac. To investigate whether Rac also regulates the pathogen-induced oxidative burst in plants, a dominant negative form of the rice OsRac1 gene was overexpressed in tobacco carrying the N resistance gene. Following infection with Tobacco mosaic virus (TMV), DN-OsRac1 plants developed smaller lesions than wild-type plants, accumulated lower levels of lipid peroxidation products, and failed to activate expression of antioxidant genes. These results, combined with the demonstration that superoxide and hydrogen peroxide levels were reduced in DN-OsRac1 tobacco developing a synchronous HR triggered by transient expression of the TMV p50 helicase domain or the Pto and AvrPto proteins, suggest that ROS production is impaired. The dominant negative effect of DN-OsRac1 could be rescued by transiently overexpressing the wild-type OsRac1 protein. TMV-induced salicylic acid accumulation also was compromised in DN-OsRac1 tobacco. Interestingly, while systemic acquired resistance to TMV was not impaired, nonhost resistance to Pseudomonas syringae pv. maculicola ES4326 was suppressed. Thus, the effect DN-OsRac1 expression exerts on the resistance signaling pathway appears to vary depending on the identity of the inoculated pathogen.


Sign in / Sign up

Export Citation Format

Share Document