scholarly journals Recurrent de novo pathogenic variant of WASF1 in a Japanese patient with neurodevelopmental disorder with absent language and variable seizures

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Keiko Shimojima Yamamoto ◽  
Tomoe Yanagishita ◽  
Hisako Yamamoto ◽  
Yusaku Miyamoto ◽  
Miho Nagata ◽  
...  

AbstractA recurrent de novo pathogenic variant of WASF1, NM_003931:c.1516C>T [p.Arg506*], was identified in a 6-year-old female Japanese patient with severe developmental delay, hypotonia, hyperkinetic behavior, and distinctive facial features. The initial report of five adult patients with WASF1 variants was the only previous report regarding variants of this gene; this is the second such report, reaffirming that rare but recurrent truncating variants of WASF1 are associated with severe neurodevelopmental disorders.

2015 ◽  
Author(s):  
Jessica X. Chong ◽  
Joon-Ho Yu ◽  
Peter Lorentzen ◽  
Karen M. Park ◽  
Seema M. Jamal ◽  
...  

ABSTRACTPurpose:The pace of Mendelian gene discovery is slowed by the “n-of-1 problem” – the difficulty of establishing causality of a putatively pathogenic variant in a single person or family. Identification of an unrelated person with an overlapping phenotype and suspected pathogenic variant in the same gene can overcome this barrier but is often impeded by lack of a convenient or widely-available way to share data on candidate variants / genes among families, clinicians and researchers.Methods:Social networking among families, clinicians and researchers was used to identify three children with variants of unknown significance in KDM1A and similar phenotypes.Results:De novo variants in KDM1A underlie a new syndrome characterized by developmental delay and distinctive facial features.Conclusion:Social networking is a potentially powerful strategy to discover genes for rare Mendelian conditions, particularly those with non-specific phenotypic features. To facilitate the efforts of families to share phenotypic and genomic information with each other, clinicians, and researchers, we developed the Repository for Mendelian Genomics Family Portal (RMD-FP). Design and development of a web-based tool, MyGene2, that enables families, clinicians and researchers to search for gene matches based on analysis of phenotype and exome data deposited into the RMD-FP is underway.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Lulu Yan ◽  
Ru Shen ◽  
Zongfu Cao ◽  
Chunxiao Han ◽  
Yuxin Zhang ◽  
...  

PPP2R5D-related neurodevelopmental disorder, which is mainly caused by de novo missense variants in the PPP2R5D gene, is a rare autosomal dominant genetic disorder with about 100 patients and a total of thirteen pathogenic variants known to exist globally so far. Here, we present a 24-month-old Chinese boy with developmental delay and other common clinical characteristics of PPP2R5D-related neurodevelopmental disorder including hypotonia, macrocephaly, intellectual disability, speech impairment, and behavioral abnormality. Trio-whole exome sequencing (WES) and Sanger sequencing were performed to identify the causal gene variant. The pathogenicity of the variant was evaluated using bioinformatics tools. We identified a novel pathogenic variant in the PPP2R5D gene (c.620G>T, p.Trp207Leu). The variant is located in the variant hotspot region of this gene and is predicted to cause PPP2R5D protein dysfunction due to an increase in local hydrophobicity and unstable three-dimensional structure. We report a novel pathogenic variant of PPP2R5D associated with PPP2R5D-related neurodevelopmental disorder from a Chinese family. Our findings expanded the phenotypic and mutational spectrum of PPP2R5D-related neurodevelopmental disorder.


2020 ◽  
Vol 7 (1) ◽  
pp. e539
Author(s):  
Daniel G. Calame ◽  
Meagan Hainlen ◽  
Danielle Takacs ◽  
Leah Ferrante ◽  
Kayla Pence ◽  
...  

ObjectiveTo demonstrate that de novo missense single nucleotide variants (SNVs) in EIF2AK2 cause a neurodevelopmental disorder with leukoencephalopathy resembling Pelizaeus-Merzbacher disease (PMD).MethodsA retrospective chart review was performed of 2 unrelated males evaluated at a single institution with de novo EIF2AK2 SNVs identified by clinical exome sequencing (ES). Clinical and radiographic data were reviewed and summarized.ResultsBoth individuals presented in the first year of life with concern for seizures and developmental delay. Common clinical findings included horizontal and/or pendular nystagmus during infancy, axial hypotonia, appendicular hypertonia, spasticity, and episodic neurologic regression with febrile viral illnesses. MRI of the brain demonstrated severely delayed myelination in infancy. A hypomyelinating pattern was confirmed on serial imaging at age 4 years for proband 1. In proband 2, repeat imaging at age 13 months confirmed persistent delayed myelination. These clinical and radiographic features led to a strong suspicion of PMD. However, neither PLP1 copy number variants nor pathogenic SNVs were detected by chromosomal microarray and trio ES, respectively. Reanalysis of trio ES identified heterozygous de novo EIF2AK2 missense variant c.290C>T (p.Ser97Phe) in proband 1 and c.326C>T (p.Ala109Val) in proband 2.ConclusionsThe autosomal dominant EIF2AK2-related leukoencephalopathy, developmental delay, and episodic neurologic regression syndrome should be considered in the differential diagnosis for PMD and other hypomyelinating leukodystrophies (HLDs). A characteristic history of developmental regression with febrile illnesses may help distinguish it from other HLDs.


Author(s):  
George Kirov ◽  
Michael C. O’Donovan ◽  
Michael J. Owen

Several submicroscopic genomic deletions and duplications known as copy number variants (CNVs) have been reported to increase susceptibility to schizophrenia. Those for which the evidence is particularly strong include deletions at chromosomal segments 1q21.1, 3q29, 15q11.2, 15q13.3, 17q12 and 22q11.2, duplications at 15q11.2-q13.1, 16p13.1, and 16p11.2, and deletions atthe gene NRXN1. The effect of each on individual risk is relatively large, but it does not appear that any of them is alone sufficient to cause disorder in carriers. These CNVs often arise as new mutations(de novo). Analyses of genes enriched among schizophrenia implicated CNVs highlight the involvement in the disorder of post-synaptic processes relevant to glutamatergicsignalling, cognition and learning. CNVs that contribute to schizophrenia risk also contribute to other neurodevelopmental disorders, including intellectual disability, developmental delay and autism. As a result of selection, all known pathogenic CNVs are rare, and none makes a sizeable contribution to overall population risk of schizophrenia, although the study of these mutations is nevertheless providing important insights into the origins of the disorder.


2018 ◽  
Vol 176 (12) ◽  
pp. 2548-2553 ◽  
Author(s):  
Caleb P. Bupp ◽  
Chad R. Schultz ◽  
Katie L. Uhl ◽  
Surender Rajasekaran ◽  
André S. Bachmann

2011 ◽  
Vol 155 (2) ◽  
pp. 424-429 ◽  
Author(s):  
Brian H.Y. Chung ◽  
James Stavropoulos ◽  
Christian R. Marshall ◽  
Rosanna Weksberg ◽  
Stephen W. Scherer ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Bingbo Zhou ◽  
Chuan Zhang ◽  
Lei Zheng ◽  
Zhiqiang Wang ◽  
Xue Chen ◽  
...  

Introduction: Neurodevelopmental disorders with language impairment and behavioral abnormalities (NEDLIB) are a disease caused by heterozygous variants in the glutamate ionotropic receptor AMPA type subunit 2 (GRIA2) gene, which manifest as impaired mental development or developmental delay, behavioral abnormalities including autistic characteristics, and language disorders. Currently, only a few mutations in the GRIA2 gene have been discovered.Methods: A GRIA2 variation was detected in a patient by whole-exome sequencing, and the site was validated by Sanger sequencing from the family.Results: We report a Chinese case of NEDLIB in a girl with language impairment and developmental delay through whole-exome sequencing (WES). Genetic analysis showed that there was a de novo missense mutation, c.1934T > G (p.Leu645Arg), in the GRIA2 gene (NM_001083619.1), which has never been reported before.Conclusion: Our case shows the potential diagnostic role of WES in NEDLIB, expands the GRIA2 gene mutation spectrum, and further deepens the understanding of NEDLIB. Deepening the study of the genetic and clinical heterogeneity, treatment, and prognosis of the disease is still our future challenge and focus.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 78
Author(s):  
Nuno Maia ◽  
Maria João Nabais Sá ◽  
Cláudia Oliveira ◽  
Flávia Santos ◽  
Célia Azevedo Soares ◽  
...  

We describe an infant female with a syndromic neurodevelopmental clinical phenotype and increased chromosome instability as cellular phenotype. Genotype characterization revealed heterozygous variants in genes directly or indirectly linked to DNA repair: a de novo X-linked HDAC8 pathogenic variant, a paternally inherited FANCG pathogenic variant and a maternally inherited BRCA2 variant of uncertain significance. The full spectrum of the phenotype cannot be explained by any of the heterozygous variants on their own; thus, a synergic contribution is proposed. Complementation studies showed that the FANCG gene from the Fanconi Anaemia/BRCA (FA/BRCA) DNA repair pathway was impaired, indicating that the variant in FANCG contributes to the cellular phenotype. The patient’s chromosome instability represents the first report where heterozygous variant(s) in the FA/BRCA pathway are implicated in the cellular phenotype. We propose that a multigenic contribution of heterozygous variants in HDAC8 and the FA/BRCA pathway might have a role in the phenotype of this neurodevelopmental disorder. The importance of these findings may have repercussion in the clinical management of other cases with a similar synergic contribution of heterozygous variants, allowing the establishment of new genotype–phenotype correlations and motivating the biochemical study of the underlying mechanisms.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadja T. Hofer ◽  
Petronel Tuluc ◽  
Nadine J. Ortner ◽  
Yuliia V. Nikonishyna ◽  
Monica L. Fernándes-Quintero ◽  
...  

Abstract Background There is increasing evidence that de novo CACNA1D missense mutations inducing increased Cav1.3 L-type Ca2+-channel-function confer a high risk for neurodevelopmental disorders (autism spectrum disorder with and without neurological and endocrine symptoms). Electrophysiological studies demonstrating the presence or absence of typical gain-of-function gating changes could therefore serve as a tool to distinguish likely disease-causing from non-pathogenic de novo CACNA1D variants in affected individuals. We tested this hypothesis for mutation S652L, which has previously been reported in twins with a severe neurodevelopmental disorder in the Deciphering Developmental Disorder Study, but has not been classified as a novel disease mutation. Methods For functional characterization, wild-type and mutant Cav1.3 channel complexes were expressed in tsA-201 cells and tested for typical gain-of-function gating changes using the whole-cell patch-clamp technique. Results Mutation S652L significantly shifted the voltage-dependence of activation and steady-state inactivation to more negative potentials (~ 13–17 mV) and increased window currents at subthreshold voltages. Moreover, it slowed tail currents and increased Ca2+-levels during action potential-like stimulations, characteristic for gain-of-function changes. To provide evidence that only gain-of-function variants confer high disease risk, we also studied missense variant S652W reported in apparently healthy individuals. S652W shifted activation and inactivation to more positive voltages, compatible with a loss-of-function phenotype. Mutation S652L increased the sensitivity of Cav1.3 for inhibition by the dihydropyridine L-type Ca2+-channel blocker isradipine by 3–4-fold. Conclusions and limitations Our data provide evidence that gain-of-function CACNA1D mutations, such as S652L, but not loss-of-function mutations, such as S652W, cause high risk for neurodevelopmental disorders including autism. This adds CACNA1D to the list of novel disease genes identified in the Deciphering Developmental Disorder Study. Although our study does not provide insight into the cellular mechanisms of pathological Cav1.3 signaling in neurons, we provide a unifying mechanism of gain-of-function CACNA1D mutations as a predictor for disease risk, which may allow the establishment of a more reliable diagnosis of affected individuals. Moreover, the increased sensitivity of S652L to isradipine encourages a therapeutic trial in the two affected individuals. This can address the important question to which extent symptoms are responsive to therapy with Ca2+-channel blockers.


Sign in / Sign up

Export Citation Format

Share Document