scholarly journals The greenhouse gas impacts of converting food production in England and Wales to organic methods

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Laurence G. Smith ◽  
Guy J. D. Kirk ◽  
Philip J. Jones ◽  
Adrian G. Williams

Abstract Agriculture is a major contributor to global greenhouse gas (GHG) emissions and must feature in efforts to reduce emissions. Organic farming might contribute to this through decreased use of farm inputs and increased soil carbon sequestration, but it might also exacerbate emissions through greater food production elsewhere to make up for lower organic yields. To date there has been no rigorous assessment of this potential at national scales. Here we assess the consequences for net GHG emissions of a 100% shift to organic food production in England and Wales using life-cycle assessment. We predict major shortfalls in production of most agricultural products against a conventional baseline. Direct GHG emissions are reduced with organic farming, but when increased overseas land use to compensate for shortfalls in domestic supply are factored in, net emissions are greater. Enhanced soil carbon sequestration could offset only a small part of the higher overseas emissions.

2021 ◽  
Author(s):  
Ulysse Gaudaré ◽  
Matthias Kuhnert ◽  
Pete Smith ◽  
Manuel Martin ◽  
Pietro Barbieri ◽  
...  

<p>While the agricultural sector is responsible for 20-30% of global greenhouse gas emissions, agricultural lands may also represent an opportunity to mitigate climate change through soil carbon sequestration. In particular, organic farming is often presented as a way of farming that leads to increased soil carbon sequestration in croplands thanks to high soil carbon inputs, especially as animal manure (Skinner et al. 2013, Gattinger et al. 2012).</p><p>However, organic farming represents only ~1.4% of the global utilised agricultural area (UAA). In a world where organic farming would expand far above (e.g. up to 100% of the UAA), we expect stringent competition for fertilising materials and therefore, a reduction of organic yields beyond the current organic-to-conventional gap of ~20% (Seufert et al. 2012). Such yield reduction might impact the amount of carbon that returns to soil in form of crop roots and residues and, in fine, the soil organic carbon sequestration of organically managed croplands. The objective of the present study is to estimate to what extent soil carbon sequestration might be affected by organic farming expansion at the global scale.</p><p>To answer this question, we combined (i) the GOANIM model that estimates material and nutrient flows in the crop and livestock farming systems under different global scenarios of organic farming expansion and (ii) the RothC model that simulates soil carbon dynamics in agricultural soils. We combined those models with a series of global scenarios representing organic farming expansion together with a baseline simulating conventional – i.e. non-organic – farming systems and soil carbon inputs.</p><p>We found that organic farming expansion would negatively affect croplands’ SOC stocks at the global scale. We found a reduction of per-hectare soil carbon input in croplands of up to 40-60%. This is due to lower yields in an organic scenario because of nitrogen limitation (up to 60% lower than conventional), reducing the amount of crop residues returning to cropland. Another impact of lower yield is a reduction of feed availability and subsequently a reduction of animal population and manure spread to soil. This reduction of carbon input is lower if farming practices are adapted to foster biomass production and carbon inputs in soils (i.e. cover crops). Such results highlight the need of systemic approaches when estimating the mitigation potential of alternative farming systems.</p><p> </p><p>References</p><p>Gattinger, A. et al. (2012) ‘Enhanced top soil carbon stocks under organic farming’, Proceedings of the National Academy of Sciences, 109(44), pp. 18226–18231. doi: 10.1073/pnas.1209429109.</p><p>Skinner, C. et al. (2014) ‘Greenhouse gas fluxes from agricultural soils under organic and non-organic management - A global meta-analysis’, Science of the Total Environment, 468–469, pp. 553–563. doi: 10.1016/j.scitotenv.2013.08.098.</p><p>Seufert, V., Ramankutty, N. and Foley, J. A. (2012) ‘Comparing the yields of organic and conventional agriculture’, Nature, 485(7397), pp. 229–232. doi: 10.1038/nature11069.</p><p>Connor, D. J. (2008) ‘Organic agriculture cannot feed the world’, Field Crops Research, 106(2), pp. 187–190. doi: 10.1016/j.fcr.2007.11.010.</p>


2019 ◽  
Vol 26 (1) ◽  
pp. 219-241 ◽  
Author(s):  
Pete Smith ◽  
Jean‐Francois Soussana ◽  
Denis Angers ◽  
Louis Schipper ◽  
Claire Chenu ◽  
...  

2014 ◽  
Vol 11 (6) ◽  
pp. 8925-8967 ◽  
Author(s):  
Z. Yao ◽  
Y. Du ◽  
Y. Tao ◽  
X. Zheng ◽  
C. Liu ◽  
...  

Abstract. To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for the rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere–atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emission) over a complete year, as well as the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40% and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.087 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of −1.33 Mg C ha−1 yr−1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80–11.02 Mg CO2-eq ha−1 yr−1 for the conventional paddy and 3.05–9.37 Mg CO2-eq ha−1 yr−1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effect from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4 and N2O and increased soil carbon sequestration, resulting in the lowest NEGE (3.05–5.00 Mg CO2-eq ha−1 yr−1). Accordingly, water-saving GCRPS with organic fertilizer amendments was considered the most promising management regime for simultaneously achieving relatively high grain yield and reduced net greenhouse gas emission.


2021 ◽  
Author(s):  
Leonor Rodrigues ◽  
Brieuc Hardy ◽  
Bruno Huyghebaert ◽  
Jens Leifeld

<p>To meet the Paris Agreement goal of limiting average global warming to less than 1.5°C above pre-industrial temperatures, European Union (EU) aims to reduce by 40% its domestic greenhouse gas (GHG) emissions by 2030 and in the longer term to become the world’s first climate-neutral economy by 2050 (“Green Deal”). Today, 10% of the European GHG emissions derive directly from agriculture, and measures to decrease or compensate these emissions are required for achieving climatic goals. The role of soils in the global carbon cycle and the importance of reducing GHG emissions from agriculture has been increasingly acknowledged (IPCC, 2018, EEA report 2019). The “4 per 1000” initiative (4p1000) has become a prominent model for mitigating climate change and securing food security through an annual increase in soil organic carbon (SOC) stocks by 0.4 %, or 4‰ per year, in the first 0-40 cm of soil. However, the feasibility of the 4p1000 scenario and more generally the capacity of European countries to implement soil carbon sequestration (SCS) measures are highly uncertain.</p><p>As part of the EJP Soil project, we collected country-specific informationonon on the available knowledge and data of achievable carbon sequestration in mineral agricultural soils (cropland and grassland) across Europe, under various farming systems and pedo-climatic conditions. With this bottom-up approach, we provide a reality check on weather European countries are on track in relation to GHG reductions targets and the “4p1000” initiative. First results showed that the availability of datasets on SCS is heterogeneous across Europe. While northern Europe and central Europe is relatively well studied, references are lacking for parts of Southern, Southeaster and Western Europe. Further, this stocktake highlighted that the current country-based knowledge and engagement is still poor; very few countries have an idea on their national-wide achievable SCS potential. Nevertheless, national SCS potentials that were estimated for 13 countries support the view that SCS can contribute significantly to climate mitigation, covering from 1 to 28, 5 % of the domestic GHG emissions from the agricultural sector, which underpins the importance of further investigations.</p>


Sign in / Sign up

Export Citation Format

Share Document