scholarly journals The in vivo ISGylome links ISG15 to metabolic pathways and autophagy upon Listeria monocytogenes infection

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yifeng Zhang ◽  
Fabien Thery ◽  
Nicholas C. Wu ◽  
Emma K. Luhmann ◽  
Olivier Dussurget ◽  
...  

AbstractISG15 is an interferon-stimulated, ubiquitin-like protein, with anti-viral and anti-bacterial activity. Here, we map the endogenous in vivo ISGylome in the liver following Listeria monocytogenes infection by combining murine models of reduced or enhanced ISGylation with quantitative proteomics. Our method identifies 930 ISG15 sites in 434 proteins and also detects changes in the host ubiquitylome. The ISGylated targets are enriched in proteins which alter cellular metabolic processes, including upstream modulators of the catabolic and antibacterial pathway of autophagy. Computational analysis of substrate structures reveals that a number of ISG15 modifications occur at catalytic sites or dimerization interfaces of enzymes. Finally, we demonstrate that animals and cells with enhanced ISGylation have increased basal and infection-induced autophagy through the modification of mTOR, WIPI2, AMBRA1, and RAB7. Taken together, these findings ascribe a role of ISGylation to temporally reprogram organismal metabolism following infection through direct modification of a subset of enzymes in the liver.

2001 ◽  
Vol 158 (1) ◽  
pp. 179-188 ◽  
Author(s):  
Takuro Ishiguro ◽  
Makoto Naito ◽  
Takashi Yamamoto ◽  
Go Hasegawa ◽  
Fumitake Gejyo ◽  
...  

2018 ◽  
Vol 1 (suppl_2) ◽  
pp. 118-118
Author(s):  
J Rocha ◽  
C Sun ◽  
M Glogauer ◽  
D Philpott

Abstract Background Variants of the leucine-rich repeat kinase 2 (LRRK2) are associated with an increased susceptibility to Parkinson disease but also Crohn’s disease (CD). Aims The present research is designed to develop a comprehensive understanding of the role of LRRK2 in immune system modulation, and how dysfunction of this pathway may lead to the development of CD. Methods WT and LRRK2-deficient neutrophil were infected with Gram-positive Bacteria (Listeria monocytogenes-LM) in a gentamicin protection assays and colony-forming unit assessment will determine the competence of LRRK2 deficient cells for bacterial phagocytosis as well as killing capacity). To examine how LRRK2 is involved in the generation of ROS during the respiratory burst, we will first examine if neutrophil from LRRK2-KO mice have altered ROS generation upon infection with LM and addition of PMA. We evaluate in vitro the ability of neutrophils from LRRK2-KO versus WT mice to transmigrate in vitro in a transwell assay using fMLP as a chemattractant. Also, we investigate the peritoneal cells (by FACS analysis) after injection of different microbial stimuli including FK105 (NOD1 ligand), MDP (NOD2 ligand) and LPS (TLR4 ligand) and anti-cd3 model of ielitis. Results We found that LRRK2 KO mice have a defect in migration of neutrophils to the peritoneal cavity after injection of different microbial stimuli including FK10565 (NOD1 ligand), MDP (NOD2 ligand) and LPS (TLR4 ligand). Neutrophils from LRRK2 mice were compromised in their ability to transmigrate in vitro in a transwell assay using fMLP as a chemoattractant. Chemotaxis was also compromised. In parallel, we designed experiments to examine reactive oxygen species (ROS) produced in response to infection of myeloid cells with bacteria. Neutrophils from LRRK2 KO mice infected with Listeria monocytogenes were less able to restrict bacteria growth compared to WT cells. Consistent with these findings, cells from LRRK2 KO mice produced lower levels of ROS following bacterial infection. In order to determine whether myeloid cell migration is compromised in vivo during inflammation, we performed experiments in WT and KO mice looking at different models of ileitis/colitis. Conclusions With this work we will further characterize the role of LRRK2 in intestinal homeostasis and mucosal barrier maintenance, including how its deficiency may predispose an individual to developing CD. Funding Agencies CAG, CIHR


1999 ◽  
Vol 82 (S 01) ◽  
pp. 4-7 ◽  
Author(s):  
Victoria A. Ploplis ◽  
Steven Busuttil ◽  
Peter Carmeliet ◽  
Desire Collen ◽  
Edward F. Plow

SummaryIn addition to its preeminent role in fibrinolysis, the plasminogen system is believed to play a key role in mediating cell migration. Leukocyte migration into the vessel wall is a key and early event in the development of the lesions of atherosclerosis and restenosis, pathologies which may be viewed as specific examples of vascular inflammatory responses. The development of mice in which the plasminogen gene has been inactivated affords an opportunity to test the contribution of plasminogen in leukocyte migration during in vivo. This article summarizes recent studies conducted in murine models of the inflammatory repsonse, restenosis and atherosclerosis in which leukocyte migration, and in particular monocyte/macrophage migration, has been evaluated in plasminogen-deficient mice. Recruitment of these cells through the vessel wall in inflammatory response models and into the vessel wall in restenosis and transplant atherosclerosis models is substantially blunted. These data implicate plasminogen in the migration of leukocytes in these murine models. With the numerous correlations between components and/or activation of the plasminogen system in restenosis and atherosclerosis, these results also support a role of plasminogen in the corresponding human pathologies.


1996 ◽  
Vol 271 (4) ◽  
pp. H1340-H1347 ◽  
Author(s):  
A. Decarie ◽  
P. Raymond ◽  
N. Gervais ◽  
R. Couture ◽  
A. Adam

Among the different enzymes responsible for the metabolism of bradykinin (BK), three peptidases look relevant in vivo: kininase I (KI), which transforms BK into its active metabolite, [des-Arg9]BK; kininase II (KII); and neutral endopeptidase, which inactivate BK and [des-Arg9]BK. The in vitro incubation of BK and [des-Arg9]BK in the serum of four species with or without enalaprilat and the quantification of the immunoreactivity of both peptides at different time intervals allowed the measurement of the kinetic parameters characterizing their metabolic pathways. Highly sensitive chemiluminescent enzyme immunoassays were used to measure the residual concentrations of BK and [des-Arg9]BK. Half-life (t1/2) of BK showed significant difference among species: rats (10 +/- 1 s) = dogs (13 +/- 1 s) < rabbits (31 +/- 1 s) < humans (49 +/- 2 s). t1/2 values of [des-Arg9]BK were also species dependent: rats (96 +/- 6 s) < < rabbits (314 +/- 6 s) = dogs (323 +/- 11 s) = humans (325 +/- 12 s). Enalaprilat significantly prevented the rapid BK and [des-Arg9]BK degradation in all species except that of [des-Arg9]BK in rat serum. Relative amount of BK hydrolyzed by serum KII was given as follows: rabbits (93.7 +/- 14.8%) = rats (83.6 +/- 6.7%) = humans (76.0 +/- 7.5%) > dogs (50.0 +/- 3.9%). Its importance in the hydrolysis of [des-Arg9]BK was 5.2 +/- 0.5% in rats < < 33.9 +/- 1.5% in humans < 52.0 +/- 1.1% in rabbits < 65.1 +/- 3.4% in dogs. The participation of serum KI in the transformation of BK into [des-Arg9]BK was dogs (67.2 +/- 5.3%) > > humans (3.4 +/- 1.2%) = rabbits (1.8 +/- 0.2%) = rats (1.4 +/- 0.3%). Finally, no significant difference on t1/2 values for BK and [des-Arg9]BK could be demonstrated between serum and plasma treated with either sodium citrate or a thrombin inhibitor. These results revealed striking species differences in the serum metabolism of kinins that could address at least partially some of the controversial data related to the cardioprotective role of kinins.


2011 ◽  
Vol 79 (9) ◽  
pp. 3596-3606 ◽  
Author(s):  
Chris S. Rae ◽  
Aimee Geissler ◽  
Paul C. Adamson ◽  
Daniel A. Portnoy

ABSTRACTListeria monocytogenesis a Gram-positive intracellular pathogen that is naturally resistant to lysozyme. Recently, it was shown that peptidoglycan modification by N-deacetylation or O-acetylation confers resistance to lysozyme in various Gram-positive bacteria, includingL. monocytogenes.L. monocytogenespeptidoglycan is deacetylated by the action ofN-acetylglucosamine deacetylase (Pgd) and acetylated byO-acetylmuramic acid transferase (Oat). We characterized Pgd−, Oat−, and double mutants to determine the specific role ofL. monocytogenespeptidoglycan acetylation in conferring lysozyme sensitivity during infection of macrophages and mice. Pgd−and Pgd−Oat−double mutants were attenuated approximately 2 and 3.5 logs, respectively,in vivo. In bone-marrow derived macrophages, the mutants demonstrated intracellular growth defects and increased induction of cytokine transcriptional responses that emanated from a phagosome and the cytosol. Lysozyme-sensitive mutants underwent bacteriolysis in the macrophage cytosol, resulting in AIM2-dependent pyroptosis. Each of thein vitrophenotypes was rescued upon infection of LysM−macrophages. The addition of extracellular lysozyme to LysM−macrophages restored cytokine induction, host cell death, andL. monocytogenesgrowth inhibition. This surprising observation suggests that extracellular lysozyme can access the macrophage cytosol and act on intracellular lysozyme-sensitive bacteria.


Sign in / Sign up

Export Citation Format

Share Document