scholarly journals Design principles of ion selective nanostructured membranes for the extraction of lithium ions

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Amir Razmjou ◽  
Mohsen Asadnia ◽  
Ehsan Hosseini ◽  
Asghar Habibnejad Korayem ◽  
Vicki Chen

AbstractIt is predicted that the continuously increasing demand for the energy-critical element of lithium will soon exceed its availability, rendering it a geopolitically significant resource. The present work critically reviews recent reports on Li+ selective membranes. Particular emphasis has been placed on the basic principles of the materials’ design for the development of membranes with nanochannels and nanopores with Li+ selectivity. Fundamental and practical challenges, as well as prospects for the targeted design of Li+ ion-selective membranes are also presented, with the goal of inspiring future critical research efforts in this scientifically and strategically important field.

Author(s):  
Heinz A. Lowenstam ◽  
Stephen Weiner

Focusing on the basic principles of mineral formation by organisms, this comprehensive volume explores questions that relate to a wide variety of fields, from biology and biochemistry, to paleontology, geology, and medical research. Preserved fossils are used to date geological deposits and archaeological artifacts. Materials scientists investigate mineralized tissues to determine the design principles used by organisms to form strong materials. Many medical problems are also associated with normal and pathological mineralization. Lowenstam, the pioneer researcher in biomineralization, and Weiner discuss the basic principles of mineral formation by organisms and compare various mineralization processes. Reference tables listing all known cases in which organisms form minerals are included.


2018 ◽  
Vol 6 (40) ◽  
pp. 19479-19487 ◽  
Author(s):  
Qiaoxia Feng ◽  
Huanxin Li ◽  
Zhong Tan ◽  
Zhongyuan Huang ◽  
Lanlan Jiang ◽  
...  

Batteries with fast charging capability are urgently needed to meet the rapidly increasing demand for energy storage devices.


2020 ◽  
Vol 79 (5) ◽  
pp. 310-316
Author(s):  
A. M. Luk’yanov ◽  
A. A. Luk’yanova

The high load on electrified lines makes tougher the requirements for the reliability and maintainability of power supply devices. Insulators are a critical element of the overhead contact network, and great attention is paid to improving their characteristics — electrical and mechanical strength. Advantages of polymer insulators in comparison with traditional ones made of porcelain and glass are generally recognized: manufacturability, low weight, compactness, ease of installation and transportation, high mechanical strength and shock resistance.The article presents the results of comprehensive studies of the electrophysical characteristics of fiberglass rods and bars made of AG-4S carried out by the University of Railway Engineers (MIIT), which were used in the developed polymer structures of the contact network. Recommendations are given on the maintenance of fiberglass rods and bars from AG-4S and their engineering support. The issues of the mechanical strength of polymer insulators of the overhead contact network are covered quite fully, therefore, this article offers the basic principles for calculating their electrical strength. The main requirements for modern polymer insulators and design features are briefly presented for each type: suspended, tension, cantilever, fixing and supporting.


2021 ◽  
Vol 5 (3) ◽  
pp. 89
Author(s):  
Jenny Wiklund ◽  
Alp Karakoç ◽  
Toni Palko ◽  
Hüseyin Yiğitler ◽  
Kalle Ruttik ◽  
...  

Innovations in industrial automation, information and communication technology (ICT), renewable energy as well as monitoring and sensing fields have been paving the way for smart devices, which can acquire and convey information to the Internet. Since there is an ever-increasing demand for large yet affordable production volumes for such devices, printed electronics has been attracting attention of both industry and academia. In order to understand the potential and future prospects of the printed electronics, the present paper summarizes the basic principles and conventional approaches while providing the recent progresses in the fabrication and material technologies, applications and environmental impacts.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1794
Author(s):  
José Pérez-Rigueiro ◽  
Manuel Elices ◽  
Gustavo R. Plaza ◽  
Gustavo V. Guinea

The prominence of spider silk as a hallmark in biomimetics relies not only on its unrivalled mechanical properties, but also on how these properties are the result of a set of original design principles. In this sense, the study of spider silk summarizes most of the main topics relevant to the field and, consequently, offers a nice example on how these topics could be considered in other biomimetic systems. This review is intended to present a selection of some of the essential design principles that underlie the singular microstructure of major ampullate gland silk, as well as to show how the interplay between them leads to the outstanding tensile behavior of spider silk. Following this rationale, the mechanical behavior of the material is analyzed in detail and connected with its main microstructural features, specifically with those derived from the semicrystalline organization of the fibers. Establishing the relationship between mechanical properties and microstructure in spider silk not only offers a vivid image of the paths explored by nature in the search for high performance materials, but is also a valuable guide for the development of new artificial fibers inspired in their natural counterparts.


RELC Journal ◽  
1979 ◽  
Vol 10 (2) ◽  
pp. 1-13 ◽  
Author(s):  
Michael P. Breen ◽  
Christopher Candlin ◽  
Alan Waters

Sign in / Sign up

Export Citation Format

Share Document